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The problem of a mixture of two stimulants in a biological quantal

assay is investigated from a mathematical standpoint. The basic assump-

tion is made that the response region does not depend on biological con-

siderations - i.e., given a specified mixture of stimulants z , the response

region is defined by the point z' in the p-variate space where there are

p stimulants under consideration; instead, the probability functions,

themselves, may take on different forms. A general form is proposed and

investigated. Three analytic models (one utilizing the bivariate normal

distribution, one a bivariate logistic distribution developed by Gumbel

(1961), and one a bivariate Burr distribution developed by this author)

are employed in this investigation. The investigation includes the anal-

ysis of data, under the three analytic models, which had been classified

by previous investigators as examples of synergistic action, simple similar

action, independent action, and additive action. The residual analyses

are included as well as the FORTRAN IV subroutines used in evaluating the

functions, the partial derivatives and the weights.

The investigation lends some support to the assumption of a constant

response region for a diversity of mixtures of stimulants. The analytic

iv



model incorporating the bivariate Burr distribution is recommended for

concern, in which case the analytic model utilizing the bivariate normal

distribution is recomme~nded. The bivariate Burr distribution developed

ir. this paper is found to be more useful in application than that devel-

oped by Takahasi (1965) .
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CHMWTER I

1. Introduction

The joint action of mi.xtures of stimulants in a biological assay

has been investigated by Bliss (1939), Finney (1942), Plackett and Hewlett

(1967), Ashford and Smith (1966), and others. Plackett and Hewlett have

made their investigations largely from the standpoint of biological con-

siderations such as the p.iysiology of the biological organism being used

in experimentation. Ashford and Smith, on the other hand, have dealt with

the problem somewhat more within a mathematical framework. In this paper,

the problem will be approached mathematically.

For the purposes of this paper a biological assay of a mixture of

two stimulants will be conducted as follows: A population of N organisms

is divided at random into t groups, where the ith group is of size ni

n1 + n 2 + °.. + nt = N. The ith group receives a treatment of a pre-

determined mixture (z 1 i , z ) of two drugs, where zi is the quantity
li 21 ji

of stimulant j measured in any convenient units. r. is the observed numberi

which manifest a prescribed quantal response. The observed relative

frequency of response pi . ri/n. is an estimate of the probability of an

organism respcnding if picked at random from the population. The proba-

bility that this orgamism picked at random will respond when treated by

the mixture (zli , z 2 i) may be assumed to take on a general form, say,

P(Zli , z2i , 0)

Now the probability of r. responses with the ith combination of
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levels of drugs can be written as

n I r n-r
nr-

P(ri) " r i(ni-ri) I LUý li '2i ' •-'J L• - li , '2i 1

r i - 0, 1, 2, .. ,t (i)

0 elsewhere.

A series of t combinations of doses is tested in an experiment. The prob-

ability of a particular set of ri's is equal to exp(L) , the likelihood,

who re

t t t
L- I ri in (Pi) + I (ni-ri)ln(Qi) + l ln[nil/ril(ni-ri) !) (2)

i-l i=l i=l

and P. = P(zi z 2 i 0_), Qi = I - Pi The maximum likelihood estimator

Sof a parameter 0 , 0 an element of 0 , must satisfy the relation

t r. DP t (ni-ri) 3Qi t _ _) DP-u -• Q = _ niPi-P
0 2-L . I1 Pi ! ae I QI a8 - 11

0 E 1@ (3)
0 i-i 1 Do i=l PiQi

Direct solution for 0 is not in general possible, but iterative techniques

are available which give a convergent series of approximations to the

solution.

The following procedure for two parameters 0 and 0 , 9 and * elements

of 0 , is of completely general applicability and may easily be extended

for the estimation of a greater number of parameters. By the Taylor-

aL aL
Maclaurin expansion of L , 2 (See relation (3).) ignoring quantities

containing terms of higher than the first degree

2 2
L 2L a2L+- -+1 =0 (4)

ae 1 0 2 DO131 0
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DL + D2L + a6 L a 0
21 0 50 a0 1 411

where the addition of the suffix I to E , ) indicated that the first

approximations are to be substituted after differentiation. The solutions

So ,6a are adjustments to OI P ýI which give the improvedi approximations

0 2 G 1 + 0+ 2  ý *

Equations (4) may be simplified through the following procedure

which will be illustrated by means of the first of equations (4).

-2L + a• 2I + 6 -a 0DO )2 2090

oro

or

2 L 6 a2 D
_2L 2L = L- 2 oa e

E)D [Di DO 1 ]@ 301

1,t nipi DPi tl n. DPi L

±~ 1 il ~ ia®
i =l i iDO1

P 2 2 +o L -Is-I 11.Doi iss Pi~i 1) i-i P.Q\ 1

t ni a2 Pi t ni /DP,

3 i=1
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t ni, 2Pi t nip, 3P, 3P.
- .Q.• nP" - 1 2i i2 1

i=l iQi 1 i-- P 1Qi 1

-2-

1: Pif l 1 0 1i a.1.i

i i

t i Pi Pi• 9L
i~ 2 30 1 aý 3

At this stage the equation may be simplified by putting pi Pi in
2 2

the coefficients of aL , • , i.e., on the left hand side of

1the last equation to give expected instead of enpirical values. The last

equation then reduces to

t ni /B __ 2 t n. a'p, @P) a
1=XP-tIn .Q .Pi)j + PtQ'I i

The latter equation in (4) can be reduced by means of a similar procedure,

i.e., putting pi = P. in the coefficients of 2L 2 L
1~ 132

11Thus equations (4) are simplified to

t n. ( Pi 2 t n ( ( _3P. _t ni( _P /Pi

1-3 V . 21/ ~ i li 0 1 )2$ i=1 Ui'i X1/

(5)

( t n . p. t ni(Pi-Pil)( B it n i 43)

S" ,l Plii\ / 8i

Here the addition of the suffix 1 to Pil' Qil indicates that the first

approximations are to be used in the evaluation of P(zli , z2i,

Equations (5) illustrate that only first derivatives are needed in this

iterative procedure.
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2. Methodology for Obtaining Estimates

Now, it will be seen from -hat follows that relation (3) can be

--.. h... - a M.... f4 A. , nn-linear least squares [Moore and Zeigler

(1967)]. Assume that the data corresponds to the mathematical model

yi M h(zi ) - ei +i = 1, 2, *. , t (6)

where the yi are observed random variables, z. is a vector of known

independent variables, a_ is a vector of unknown parameters, and ci is a

2 2
random variable such that E(ei) = 0 , E(E2) = a , and E(e i)E 0 for

all i # j . Then the vector of unknown parameters may be estimated by

minimizing the weighted sum of squares,

S = I-i , )) 2(7)
S Yi - h(z wi

where W. is an appropriate weight. If the usual procedure is modified so

that the partial derivatives are taken ignoring Wi , the normal equations

are

t h%(z. , c)
S 2 Wi[y. "h(zi , -1]- -0 , (8)

Dak i--l 1 -1

for k = 1, 2, , , where £ is the number of unknown parameters. Now

by letting Wi = ni/PiQi (the reciprocal of the variance of p.) ' Y. = Pi

h(zi , s) = P.i Qi = 1 - P.i , and a k = 0 it can be seen that relation

(3) and equation (3) are equivalent. Thus the maximum likelihood estimate

can be obtained by means of a modified weighted non-linear least squares.

Relations (5) and their equivalent extensions are used in the modified

non-linear least squares fitting of equation (6).
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3. Consideration of Necessary Conditions on P(z, , z , 0)

From this point onward the vector z, = ')will "e considered
-i 2z -

from the standpoint of a mixture of stimulants where a transformation has

been applied to the original dosage levels so that - is equivalent to

zero dosage and +- is equivalent to an infinite dosage. For the purposes

of this paper P(zli , z , ) must satisfy the following conditions

P(Z , 0) = P(+- , z , 0) 1 , (9)

P(Zli , •,0=Pl(Zli , _1) (10)

and P(- 21 ) P 2 (z 2 i , 2 ) , (11)

where Pl(zli , 0_) and P2 (z 2( , 02) are not in general zero, but rather

are marginal probabilities, i.e., the probability of a random individual

biological organism responding if it is given a dosage of stimulant j

corresponding to z, j. Conditions (9), (10), and (11) imply the conditions

P - , 0) - 0 , (12)

and P(+c , • ,0) 1 (13)

All five of these conditions are necessary in a bioassay of quantal response

data involving a mixture of two stimulants. Natural extensions of these

conditions for a mixture of more than two stimulants are now obvious.

Plackett and Hewlett (1967) proposed that

P = R f(zii I z2i )dZii dz2i (-4)
R

where f(zii, z2i) is a bivariate density with the usual properties and

R is defined on the basis of biological considerations, thus implying that
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the region of integration may, arbitrarily, be changed due to biological

considerations. Their papers do not indicate any homogeneity in the regions.

Nowhere is there a aeneral formulation for P(z.. , z-. , 0) where the form.LJ •.2 --

of the region of integration is homogeneous, much less constant. It would

appear that the region of integration should be constant except possibly

for simple monotonic transformations of the original dosage levels, such

as a logarithmic transformation. The bivariate function itself might be,

in specific instances, of different types but still retaining a constant

response region.

Let F1 (z 1 , _1), F2 (z2 , 2) be univariate distributions where the

parameter vectors _ 1 '_2 are not, in general, equal. Note that Fl(Z1 , z 1),

F2 (z 2 , 2) are not necessarily even from the same family of distributions,

e.g., the family of normal distributions. Let F 3(zI , z, 2 _) be a bivariate

distribution such that F3 (zI , ), = FIz 1 , _i) andF 3(+4 , z2 22)

= F 2 (z 2 , 22)' where 0' = (q ,_ , Q_•) . Now, what is needed is a

function which satisfies conditions (9) through (13).

Let

H(z I , z2 , )=Fl(z I _1 ) + F2 z2 , 22) -F 3 (zI , z 2 . 2) (15)

Then H(-, , , 2 _) = F2 (z 2 , 2), H(zI , - 2 , 0) -- F1 (zI ,

H(+o 2 , , 0) -1 = H(z 1 , , 0), H(- , -• , 0) = 0 , and H(+- , E, )

= 1 • Thus H(zI , 2 , 0) does satisfy conditions (9) through (13) which

suggests that

P(Zli I z2i , Fl(Z , 21) + F2 (z2 , 22 ) -F 3 (z , z, 0) (16)

is a gene:cal formulation for P(Zli , z 2i , 2) where the response region

is consf-nt. Note that the forms F(1 (zl , .Sl), F 2 (z2i , 2) , F 3 (zli , z , 2 )
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are completely general distributions whose forms can depend on biological,

6r-thr ÷- At the 5am^ +i-ahe reaion of inte-

gration is constant and easily understood from a geometrical standpoint

as well as from other standpoints. It is noted here that the general

formulation for P(z 1  i, 0) can easily be extended for a vector of

more than two stimulants. The utility of this form is quite general;

the only restrictions being conditions (9) through (13) which have been

imposed in the development of the general form in equation (16).



CHAPTER II

It is natural in the study of a mixture of two stimulants to con-

sider a bivariate probit or normit. Probit analysis has no advantage over

a normit analysis if the analysis is run on a high-speed computer. Also,

the analyses are equivalent. Almost all of the work that has been done

to date has been along the lines of a bivariate normit.

Bliss (1939) was among the first to study the action of mixtures

of two stimulants. He classified the joint action of two stimulants into

three biological categories: independent joint action, similar joint

action, and synergistic action. Independent joint action occurs when-

ever two components act on different vital systems in the organism and

do not interact with one another. Similar joint action is observed when-

ever two components act independently of one another but on the same vital

system. Synergistic action is characterized by a larger frequency of

response than could be predicted from experiments using the individual

stimulants. He mentions antagonistic action but did not treat this concept

at all. He stated that it is the reverse of synergistic action. Finney

(1942) suggested that antagonism is negative synergism and can thus be

treated in the same category as synergism.

Bliss (1939), for the category of independent joint action, plotted

expected response in probits against dosage of mixture in logarithms. At

each point the ratio of the amount of a given stimulant to the amount of

the other stimulant was held constant. These curves were not smooth but

9
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rather fell into two segments each of which appeared to be a straight

line. The transition from one straight line to the other was relatively

abrupt. He suggested the equation

PC = PA + PB(I - P (- r) (17)

where pA > PB ' PA is the probability of response due to the effect of

stimulant A , pB is the probability of response due to stimulant B , r

is a measure of "association of susceptibilities," and PC is the proba-

bility of death due to the combination of stimulants A and B He did not

indicate what, if any, relation he assumed between equation (17) and the

plots of data.

For the category of similar joint action Bliss suggested equation

YC = a' + b log(DA + kDB) (18)

for the dosage response curve, where DA and DB are the respective doses

of stimulants A and B in the mixture and k is the ratio of the frequency

of response of the individual stimulants. The plots for this case are

thus straight lines.

Bliss suggested two possible equations for synergistic action. The

first, which relates the total amount of active material (DA + D B) and the

amount of the more active stimulant, say A , is

(D + DB)DA = k , (19)
A BA

where DA and DB are in original dosage units, which implies the probability

of response to the combination of the two stimulants is determined by the

sum of the ingredients multiplied by some power of the amount of the more

active stimulant. The second equation, again with A being the more active

stimulant, is



h
(I + k D )D'B = (20)

which was suggested for the cases where the proportion of A approaches

zero. It should be noted that these suggested equations do not bear

any clear logical relation one to another.

Plackett and Hewlett (1961) utilize the following biological

classification of joint drug actions:

Similar Dissimilar

Non-interactive Simple Similar Independent

Interactive IComplex Similar InDependent

Here the suggestion is that the actions of the stimulants are similar or

dissimilar respectively as the stimulants act on the same biological site

or on different ones, and as interactive or non-interactive depending on

the presence or absence of synergism (or antagonism). They, then, propose

mathematical equations (some in an implicit form) based on the above

biological classifications which, again, do not bear any clear logical

relation one to another. Finally, they introduce a statistical concept

into their presentation by making an assumption as to the bivariate

distribution of l ' £2 where l I z2 are the respective tolerances to

stimulants A and B . They suggested that a reasonable assumption would

be that the log tolerances log Zl I log z2 are distributed bivariate

normally. They did not give examples of data fitting any of the proposed

models.

Ashford and Smith (1964) approached the problem somewhat differently.

They classified the mathematical model as interactive or non-interactive
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ratber than attempting to classify on the basis of biological considera-

tions. They define non-interaction as beina ecuivalent to the condition

on P = P(z 1 , z, 0), the probability of response, where z and z2 are

the logarithms of dose, such that

p )p 2 2
W1 2 (P) =P PP(P P - l 1(P222 - P2 PI) = 0 (21)

where P = - - , and P . Their mathematicala 9 ' a • U6 z 0,az• Oly az a9z a z Y
classification is not equivalent to Plackett and Hewlett's. Ashford and

Smith remarked that no valid distinction can be made between similar and

dissimilar action purely on the basis of quantal response data.

Ashford and Smith published some trivariate data on exposure to

coal dust for which the response was the prevalence of pneumoconiosis for

groups of mine workers. The three dosage variables, respectively, were

the time spent in years at coalface coal-getting, coalface preparation,

and elsewhere underground. They assumed that the tolerances were normally

distributed. They then compared two models where the regions of response

were not only different but were each complicated functions of the dosage

levels. They applied chi-square goodness-of-fit tests (each with fifteen

degrees of freedom) to the models obtaining chi-square values of 12.73 and

16.86 , respectively, from which they quote the corresponding approximate

significance levels. They do not indicate explicitly the form of the

probability function used but rather only the functional forms indicating

the response regions.

Zeigler and Moore (1966) presented a paper at the 1 2 6 th Annual Meeting

of the American Statistical Association on "Multivariate Quantal Response

Analysis Using Regression Methods." In this paper, in addition to showing

that weighted least squares can be used to converge on maximum likelihood
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estimates, they fitted a bivarif.be normal distribution to toxicity data

involving the direct sprays of Pyrethrins and D.D.T. in Shell Oil P31

app.ied to flour beetles (Tribolium castaneum). Using a chi-square

goodness-of-fit test with nineteen degrees of freedom, they obtained a

value of 12.17 and reached the conclusion that the fit was satisfactory.

None of the investigations up to this point have utilized the general

form suggested in Chapter I, although tha specific form utilized by Zeigler

and Moore (1966) is equivalent for the special case where thu tolerances

Z and z 2 to drugs A and B are each distributed normally.

It would seem useful to do some numerical studies utilizing some

of the data in the literature with some analytic models which conform to

the general form in equation (16). For this purpose, seven sets of data

were utilized. Included amoiig these were sets that have been classified

in the following categories by previous investigators: synergistic action,

simple similar action, independent action, and additive action.

Data set one, classified as synergistic by Bliss (1939), was first

published by Kagy and Richardson (1936). This set is from a study of the

combined action of 2-4-dinitro-6-cyclohexylphenol and petroleum oil

sprayed in emulsions against eggs of a plant bug (Lygueus kalmii Stal.).

Data set two, published by Plackett and Hewlett (1952), was classified by

them as simple similar action. This data set is from a study of the

combined action of D.D.T. and methoxychlor applied in Shell Oil P31 to

flour beetles. Data set three, published by Hewlett and Plackett (1950),

was classified by them as independent action- This is the data set which

Zeigler and Moore (1966) fitted to a bivariate normal by means of weighted

least squares. Data sets four, five, and six, published by Martin (1942),
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were not classified by the investigator into any category. Data set

f•,ur 4 f,-, 0- iudv of the toxicity of the combined action of rotenone

and a dequelin concentrate in a medium of 0.5% saponin containing 5% of

alcohol applied to chrysanthemum aphides (Macrosiphoniella sanborni).

Data set five is from a study of the toxicity of the combined action of

rotenone and Z-elliptone under the same laboratory conditions as data set

four. Data set six is from a study of the toxicity of the combined action

of rotenone and i-ot-toxicarol under like laboratory conditions. These

three data sets showed some signs of synergism to the investigator, but

he did not find it to be significant in any one of the data sets. Data

set seven, published by Ashford and Smith (1964), is from a study of the

prevalence of pneumoconiosis in groups of mine workers where the years

spent on "coal-getting" is one imput and the other imput is years spent

in "haulage." This data set was classified as an example of additive

action by the investigators.

A bivariate normit analysis was run on the above seven sets of data.

The analytic model for the bivariate normit analysis was

a+ ZI _ 1_a 1 11 2 11
P(zI , 2, ) = 1(2) 2 exp(- _ t2 )dt

a2+B z 1

+ (2) 2 exp(- 2 )ds (22)

a BIz1a 2+B 2z2

exp[-(t 2 - 2pts + s2)/2(l - 2 2 )dtds, <zI

z2 <
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A modified least squares (see Chapter I) FORTRAN IV Computer program was

utilized on a Model 44 IBM 360 system. A resume of the results is given

in -vaoie i.

The following is a brief explanation of the items listed in Table 1

as well as the next two tables: N is the number of stimulant combinations.

SSE is the weighted sum of squares due to error which is approximately dis-

tributed as a chi-square. SSR is the weighted sum of squares due to ze-

gression and is computed as SST - SSE where SST is the weighted sum of

squares adjusted for the weighted mean. SSR is approximately distributed

2as a chi-square. R , which is computed as SSR/SST , tells what portion

of SST is due to regression. Computing SSR as SST - SSE and R2 as SSR/SST

gives both a conservative estimate of the significance of regression and

2
a conservative coefficient of determination R2. The column entitled

"No. of significant chi-squares" tells how many of the chi-square statistics

computed at each dosage level (stimulant combination) exceeded 3.84 , the

.95 value of a chi-square with one degree of freedom.

Data No. of 2 2
Set N Significant SSE I d.f. SSR I d.f. R
No. Chi-squares j _

1 18 5 67.029 13 66041 4 .99899

2 10 1 21.775 5 598.86 4 .96491

3 24 0 11.805 19 11176 4 .99894

4 17 2 27.147 12 1656.0 4 .98387

5 12 2 28.947 7 921.36 4 .96954

6 15 0 10.145 10 30672 4 .99967

7 40 2 38.141 35 217.75 f 4 .85095

TABLE 1

Ir
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For all of the data sets the regression is found to be significant

using SSR as the indicator. However, the chi-square for departure from

the model is insignificant in only three of the cases, namely data sets

three, six, and seven, which include the cases of independent achion and

adlitive action.

The synergistic data (data set 1) had sample sizes ranging from

240 to 479 (see Appendix I) at its eighteen data points. The bivariate

normit analysis indicated that five of these points differed significantly

from the bivariate normal model. Some of these points were marginal data

points and some were not. One of the data points contributed 34.266 to

the cumulative chi-square, slightly more than half of the total, but the

chi-square would still be significant even without this particular data

point. Upon examination of the residuals, the fit does look good with the

exception of the one data point, but with the large sample size at each

point, the fit would have to be extremely close in order for the cumulative

chi--square to be insignificant. On the whole, it is felt that the bivariate

normit analysis did quite well with the data and that the model does des-

cribe the phenomenon reasonably well, considering the significance of

regression (SSR), the weighted sum of squares due to error (SSE), along

2with the sample sizes, and the coefficient of determination R

The simple similar action data (data set 2) had sample..sizes ranging

from 148 to 200 (see Appendix II) at its ten data points. The analysis

indicated that one of these points differed significantly from the bivariate

normal model. Again upon examination of the residuals, the fit does look

good although not quite as good as the previous data set. The conclusion

based on the analysis of the data is th.At the model does describe the

phenomenon fairly well, with the -xception of the one data point.
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The independent action data (data set 3) had sample sizes ranging

from 48 to 50 (see Appendix III) at its twenty four data points. The

model does fit the data well and none of the data points differed

significantly from the miodel. The weiqhted sum of squares due to error

is 11.805 . Zeigler and Moore (1966) fitted this same data set and the

weighted sum of squares due to error for their model is 12.17 , thus

indicating the similarity of the fit.

Data sets four and five are quite similar. They had sample sizes

rangirg from 28 to 51 (see Appendices IV and V) at their data points.

Each had two data points that differed significantly from the bivariate

normal model and examination of the residuals does not indicate as good

a fit as for any of the previous data sets. The model still does describe

most of the data points well, but it does not seem to do as well as for

the earlier cases.

Data set six had sample sizes ranging from 48 to 51 (see Appendix VI)

at its fifteen data points. The model does fit the data well and none of

the data points exhibit a significant deviation from the model. Two

bivariate normit analyses were run on this data set using slightly different

convergence criteria. The first run utilized the relative change in the

unweighted sum of squares due to error and the second the relative change

in the weighted sum of squares due to error. The first run after conver-

gence had the sum of squares due to error as 0.031265, while the weighted

sum of squares due to error was 0.78159 x 1015 . The second run after

convergence had the sum of squares due to error as 0.032040 while the

weighted sum of squares due to error was 10.145 . Which criteria produces

the best fit becomes questionable at this point. It would seem that either

set of parameter estimates would have to be considered acceptable despite

the large chi-square value attributed to the first fit.
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Data set seven had sample sizes ranging from 2 to 135 (see Appendix VII)

at its forty data points. The model does fit the data well although there

are two data points which deviate significantly from the model. Ashford

and Smith (1964), who classified this data as an example of additive ac' on,

fitted the data to a model, assuming the mar:ginals to be logistic, using

a rather complicated response region which does not seem to have been

necessary.

In general the bivariate normit analysis seems to do quite well with

a diversity of mixtures of stimulants, as is evidenced by the seven sets

of data analyses here. These analyses appear to lend support to the

assumption that the form of the response region should remain constant

irrespective of the biological considerationr, at least in relation to a

bivariate normit.



CHAPTER III

A bivariate logit is, perhaps, as natural to consider in the study

of a mixture of two stimulants as a bivariate normit, even though very

little work has been done along these lines.

Ashford and Smith (396,4) ran an analysis on data set seven assuming

the marginals to be logi'tir:. They fitted the data to a model using a

ccy,-licated response region without explicitly defining the mathematical

model. There does not appear to have been any other examinations of

data by means of a bivariate logit in the literature

In the case of a bivariate logit, the first consideration is the

form of the bivariate distribution to be used. The bivariate logistic

distribution utilized in this study was

[1 + exp(- x)3 [l + exp(- y)]-1

F3 (x,y) =+ ao + exp(- x)]-l[1 + exp(- y)]-i

w exp(- x - y)} , -O < x , y < 0 (23)

which was developed by Gumbel (1961). The density function is

{exp(- x - y)'[l + exp(- x)3-2

y [1 + exp(- y)]-2} . +1 + a0[l - exp(- x)

f3 (x'y) exp(- y) + exp(- x - y)]/(l + exp(- x)

+ exp(- y) + exp(- x - y)]} , -0 < x , y < (24)

The correlation coefficient is

19
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302 (25)O --3a 0 /T2

where - I < a0<_ 1 ; thus i <3/12

A bivariate logit analysis was run on the seven data sets utilizing

the Gumbel bivariate logistic distribution. The analytic model for the

bivariate logit analysis was

P(z 1 , z, 0) { + exp[Bl(z 1 + a,)]}-I + 11 + exp[B 2 (z 2 + a 2 )]}-I

- {1 + exp[B1 (z1 +al)]}l {a + exp[B2 (z 2 + a2 )]}-

1 {i + a 0 {l + exp[Bl(Z1  + a1)]} 1 {i + exp[B2 (z 2 + a2)]-

Sexp[B 1 (Z1 + a1 ) + B2(Z2 + a 2 )] }

-< zI , Z2 < 0C (26)

A resume of the results is given in Table 2. The entries of Table 2 are

the same as those of Table 1.

Data No. of 2
Set N Significant SSE j d.f. SSR d.f. R
No. Chi-squares j -

1 18 5 76.403 13 48773 4 .99844

2 10 4 29.262j 5 574.90 j 4 .95157

3 24 0 15.603 19 3165.4 4 .99509

4 17 2 29.616 12 1365.2 4 .97877

5 12 3 30.169 7 675.69 4 .95724

6 15 0 11.976 10 20170 4 .99941

7 40 2 39.020 35 221.36 4 .85014

TABLE 2
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As was the case for the bivariate normit, tue regression was found

tn h• sinnificnmt fnr eanh of the seven data sets. and data sets three,

six, and seven have nonsignificant chi-squares indicating no significant

departure from regression.

For each data set, the SSE from the bivariate logit analysis was

larger than the corresponding SSE from the bivariate normit analysis.

2
Similarly R from the bivariate logit analysis for each data set was

smaller than the corresponding R2 from the bivariate normit analysis.

The bivariate logit analysis indicated that the same number of data points

differed significantly from the bivariate logit model as was the case with

bivariate normit model for each data set with the exception of data set

two (simple similar action), and data set five. With data set two, the

bivariate logit analysis indicated that four out of the ten data points

differed significantly from the bivariate logit model as compared to one

out of ten in the bivariate normit analysis. With data set five, the

bivariate logit analysis indicated that three out of the twelve data

points differed significantly from the bivariate logit model as compared

to two out of twelve in the bivariate normit analysis.

On the whole, the bivariate logit analysis did not do as well as

the bivariate normit analysis, although it did nearly as well with six

out of seven of the data sets. It would seem likely that the main reason

that the bivariate logit model did not do as well was due to the fact

that the correlation coefficient of the model employed was restricted so

that pIj < 0.30396 , approximately, and 11i > 0.30396 for all seven data

sets in the bivariate normit analysis. It would be useful to extend this

investigation to include a bivariate logit model where the correlation

coefficient is not so restricted, i.e., where - 1 < p < 1 inclusive.
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CHAPTER IV

In this chapter the assumption that the marginals follow the Burr

distribution will be made. This is a somewhat more general assumption

than the assumption that the marginals are normal (or logistic).

The general system of distributions referred to here was first

given by Burr (1942). Using as an expression for the distribution function

1- (1+ xb)p x > 0 ;b , p > 0
F(x) = (27)

10 xc<0

F(x) covers an important region of the standardized third and fourth central

moments in the following sense. Figure 1 shows that the system covers a

large portion of the curve-shape characteristics for Types 1, I11, IV, and

VI of the Pearson system. Figure (1) is drawn with coordinates a 3  1

32 th
and 6 = (2a 4 - 3a - 6)/(a4 + 3), where ai is the i standardized central

moment. The regions covered by the Pearson Types I (or beta), IV, and VI

are indicated, as well as Type III (or gamma) which lies on a curve, and

the normal, logistic,rectangular, and exponential distributions which are

represented by points. The subscript B refers to bell shaped functions

and J to J shaped functions. It can be seen from Figure (1) that this

system of distributions is quite general.

Takahasi (1965) developed a multivariate Burr distribution by using

the fact that a Burr distribution is a compound Weibull distribution with

a gamma-distribution as a compounder. That is, if

22
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Figure 1. Upper and lower bounds of coverage in ý1

space for the general system of distributions as given

by Burr (1968).
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b-

~0bxb-e"G x> 0

w(x~b,O) b (28)
0 x< 0

and 0 is a random variable such that

0P- e- /r(p) 0 > 0
g(o;p,l) = (29)

o0 <_0

then the resultant probability density function is Burr. The special case

of the bivariate density is

bl-1 b2-1 bl b2 -(p+2)
f (xl x) b~+2 blbrr2xl x2 (1 + rlxI + rx ).

2 r (p) 1 2 1 2 1 2 1 1  2  x >0 (iU1,2)

- 0 elsewhere. (30)

The bivariate distribution is

b.b2 bI b
i~iIx+rx 1 ) -p ( + r x 2 )-P (i + rlx + ry2Y 2)-pF(x 2 , x2) =21 - (1+ r +

x, < 0
3 -

- 0 elsewhere. (31)

It should be noted at this point that the r. are equal to one in the Burr1

distribution as given by Burr (1942). If x. is set equal to B (z. + ai),

it is easily seen that the r. 's are redundant. In addition, if the b. 's1. 1

and p are held constant, e.g., the third and fourth standardized central

moments can be set equal to those of the normal distribution by proper

choice of the b. 's and p , then the correlation coefficient is a constant.
1

It was attempted to find a form of a bivariate Burr distribution such

that the correlation coefficient would not be a fixed constant. The form

developed by the author is



b b2 b1 b2 b1 b2 .

F(xI 1 2 + x I + x2 + + x1 + x2 + rx1 x 2

x, .>0

O< r< p +1

"- 0 elsewhere (32)

The bivariate density is

b2  b b-l b2-1 b b 2
f(xI , x 2 ) = p(p + 1) (1 +rx 2 ) (1 + rx 1 )blb 2  x 1  x 2  (i + x 1 + x 2

bl b2 (p+2) b-1 b2-b1 bI b2 bI b2 -
+ rx x ) - prbb 1 +2 x + x2 + rxl x2)-(P+i)

+X 1 ~2 1r 2 1 ~ 2  ( x 1  2 1 2

X, > 0

0< r< p+ +

0 elsewhere (33)

The marginals are of the form given by Burr (1942). Th• conditional

distribution of x. given x. i $ j is

b b

- -r. + x, bi -(P~

= (X) +( +i r) b],x.p0)

o e lsewhe re (34)

The conditional density of x, given x. is

f(xi+x)) r b1- L + ( - + I 1 I

b b

1+ 1 + xi 3.>

1 + rx b

+bx bi I +l 1.X.>

=0 elsewhere. (35)
-- iI -P 1 (l r 1)b X - .

rb x + b, x i x i >
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The correlation coefficient is

Pi r/ P
..- -- b 2 r(p - '2) 2 1

+ lx2 jrr( b- 2(l2 )2(

1 21 + 1~p - rI, + -L2 _ _L)1•1

F + -LFP- 6ir(p) - r 2(l + _L)ir2(p - ,L (36)

where 2 FI(c,B;y,z) is Gauss' hypergeometric function. If r = 1 , then

p Ix02 = .

A bivariate Burrit analysis was run on the sevon sets of data using

the bivariate Burr distribution described above. The analytic model for

the bivariate Burrit analysis was

(z, z2 1 + [B(z + Z)] + [B (z + a)]
P~z1 , ,e 1 l+11 2 2 2

b I b 2 -<

+ r[B1 (z 1 + a)] [B 2 (z2 + a 2 )] •2 1p -a, < zI <=

-a2 < z2 <

= 0 elsewhere (37)

A resume of the results is given in Table 3. The rows corresponding to

eight parameters to be estimated constitute the general case of the Burrit



27

D~t~t No. o f No. of
Set Parameters N Significant SSE I d.f. SSR I d. f. R2
No. To be Estimated Chi-squares I _

8 2 41.6461 10 67964 J 7 .99939
87 5 64.6941 11 45745 6 .99859

S 5 70.017 13 70566 4 .99901
4 5 92.6191 14 34582 3 .99733

8 3 23.0271 2 573.701 7 .96146

27 10 , 38.2791 3 544.201 6 .933805 3 26:2961 5 577:201 4 .956434 5 46.538 6 559.09 3 .92316
8 0 13.2271 16 4262.0 7 .99690

7 24 2 29.737 17 1178.8 6 .97539
5 2 32.5791 19 8668.41 4 .99696
4 10 114.171 20 1309.01 3 .91978

8 2 27.1251 9 1655.71 7 .98388

47 17 3 32.1782 10 1683.0 6 .98089
5 2 27.130 12 1673.8 4 .98450
4 3 34.5931 13 1483.81 3 .97722

8 2 29.221 4 1081.9 7 .97370
12 2 31.9011 5 1508.31 6 .97929

5 2 29.3791 7 862:11 4 .96705
4 3 36.603 8 905.50 3 .96115

8 1 9.660 7 67305 7 .99986
715 2 13.648' 8 13398 6 .998985 0 12.0471 10 23681 4 .99949

4 1 23.4801 11 .682.71 3 .99659

8 2 38.2931 32 217.301 7 .85018
77 40 3 38.7651 33 219.841 6 .85010

5 2 38.338 35 218.53 4 .85075
4 2 38.7661 36 219.061 3 .84964

TABLE 3
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analysis; th3 rows corresponding to seven parameters to be estimated

correspond to the special case with r = 0 which reduces to a Burrit analysis

using the bivariate Burr distribution developed by Takahasi (1965). The

rows corresponding to five and four parameters to be estimated have a 3 = 0 I
a 4 = 3 (the third arid fourth standardized central moments), which are the

same as the normal distributions' a3 and a4 " The first of these is a

special case of the general Burrit analysis and the second, a special case

of the Burrit analysis using the Takahasi bivariate Burr distribution.

As was the case for both the bivariate normit and the bivariate logit,

the regression was found to be significant for each of the seven data sets

for all of the bivariate Burrit analyses (four on each data set). The

chi-square test was insignificant, indicating no significant departure

from regzession for data set three with the general Burrit analysis, for

data set six for all but the analysis with four parameters to be estimated,

and for data set seven for all four of the analyses.

The SSE from the general case of the bivariate Burrit analysis was

significantly smaller than that from the bivariate normit analysis only

with the synergistic data (data set one). In no other case is there any

indication that the bivariate Burrit model is better than the bivariate

normit model in the actual fitting of these data to a model.

Each SSE from the bivariate Burrit analyses utilizing the bivariate

Burr developed in this paper is significantly smaller than the corresponding

SSE from the analyses utilizing the Takahasi bivariate Burr distribution

in all but three cases: both cases with data set seven, and the first case

with data set five (the case corresponding to the two analyses with eight

and seven parameters to be estimated). On the basis of these analyses it

would seem that the bivariate Burr developed in this paper would be, in
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general, more useful in application than the form developed by Takahasi.

synergistic data, as chardcterized by a3 and a, I do not lie in the same

Pearson curve area (see figure 2). The marginals for data set three also

display this characteristic but not to as high a degrne. The marginals

for data sets four through seven are all clustered around the normal dis-

tribution. The fact that the assumption that the marginals are Burr dis-

tribution does allow given marginal to have curve shape characteristics

different from that of the other marginal suggests that the bivariate

Burrit analysis may be well adapted for the analysis of data where the

marginal distributions do not belong to the same family, e.g. the family

of normal distributions.

In sunmary, the bivariate analyses utilizing the general form indicated

by equation (16) seem to do quite well with a diversity of mixtures of

stimulants as is evidenced by the scven sets of data which have been ana-

lyzed in this paper. The bivariate normit model and the bivaria1-e Burrit

model (general case, i.e., the case with eig.,t parameters to be estimated)

seem to be best suited for these types of analyses. The bivariate normit

model would have to be recommended if the number of parameters to be esti-

mated is of concern, but otherwise the bivariate Burrit model could well

be the best model for these types of analyses.
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Figure 2. Expanded portion of the coverage 1, 6 space.

The x's mark six of the sample population points (81 , 6),

from the data sets analyzed in this paper. N. (N=I, 2, 3;

i=a, b) refers to the ith marginal of the Nth data set.



APPENDIX I

Data of Kagy and Richardson (1936): The combined action of 2-4

dinitro-6-cyclohexylphenol and petroleum oil sprayed in emulsions against

eggs of a plant bug (Lygaeus Kalmii Stal). Th, data as described by Kagy

and Richardson, the translated data, and the analyses on this set of data

(data set one) are in this appendix.

31
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DATA AS DESCRIBED IN TEXT TRANSLATED DATA

CONCENTRATION OF
£14

Phenol Mixture Number Net
in Oil in of Kill X(l) X(2) Pi

Mixture % Spray % Eggs

0 1 240 6.5 0 .01 .0667

0 2 479 40.1 0 .02 .4008

0 3 479 58.7 0 .03 .5866

0.1 1 240 9.9 .00001 .00999 .1000

0.1 2 479 59.7 .00002 .01998 .5971

0.1 3 479 72.3 .00003 .02997 .7223

0.5 1 288 30.1 .00005 .00995 .3021

0.5 2 479 73.7 .0001 .0199 .7370

0.5 3 479 90.4 .00015 .02985 .9040

1.0 1 288 58.6 .0001 .0099 .5868

1.0 2 384 94.0 .0002 .0198 .9401

1.0 3 288 97.22 .0003 .0297 .9722

2.0 1 288 81.2 .0002 .0098 .8125

2.0 2 384 97.13 .0004 .0196 .9714

2.0 3 288 99.65 .0006 .0294 .9965

3.0 1 288 86.8 .0003 .0097 .8681

3.0 2 384 99.48 .0006 .0194 .9948

5.0 1 240 96.66 .0005 .0095 .9667

Here (Ni(ith Net kill %)/100) was rounded off to the nearest integer --

.th
wh:Lo.- should be r., the number that responded to the i mixture of stim-

ulants, and then pi was computed as r,/N..

I '• I • "
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BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

a1 = 8.640 source d.f.

B = 0.935 Due to Model SSR 4 66041Departure from Model SSE 13 67.029
a2 = TOTAL SST 17 66107

B2 = 1.489
2

p = -0.379 Coefficient of Determination R = .99899

Residual Analysis

Pi Pi Residual Chi-square

.0667 .1016 -. 0349 3.201

.4008 .4049 -. 0041 0.033

.5866 .6417 -. 0551 6.317

.1000 .1180 -. 0180 0.750

.5971 .4637 .1334 34.266

.7223 .7231 -. 0008 0.002

.3021 .3596 -. 0575 4.139

.7370 .7675 -. 0305 2.490

.9040 .9277 -. 0237 4.024

.5868 .5859 -. 0009 0.001

.9401 .8986 .0415 7.266

.9722 .9768 -. 0046 0.274

.8125 .7986 -. 0139 0.346

.9714 .9691 .0023 0.069

.9965 .9950 .0015 0.137

.8681 .8865 -. 0184 0.973

.9948 .9870 .0078 1.809

.9667 .9536 .0131 0.931
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BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table"

a0 = -0.938 source ____

a, = 9.220 Due to Model SSR 48773

-1.690 Departure from Model SSE 13 76.402
B - TOTAL SST 17 48849

a 2 = 3.762

22-2 = -2.413 Ccefficient of Determination R2 =99844

Residual Analysis

P P. Residual Chi-square

.0667 .1155 -. 0488 5.597

.4008 .4103 -. 0095 0.177

.5866 .6492 -. 0626 8.246

.1000 .1352 -. 0352 2.540

.5971 .4601 .1370 36.200

.7223 .7120 .0103 0.247

.3021 .3438 -. 0417 2.220

.7370 .7627 -. 0257 1.749

.9040 .9303 -. 0263 5.117

.5868 .5837 .0031 0.011

.9401 .9013 .0388 6.503

.9722 .9774 -. 0052 0.348

.8125 .8087 .0038 0.027

.9714 .9658 .0056 0.365

.9965 .9929 .0036 0.520

.8681 .8917 -. 0236 1.654

.9948 .9821 .0127 3.527

.9667 .9504 .0163 1.354
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BIVARIATE BURRIT ANALYSES

3 1: General Case - Eight Parameters to ne Estimated

Parameter Estimates Chi-square Analysis Table

r= 3.556 source d.f.

bl = 9.643 Due to Model SSR 7 67964
Departure from Model SSE 10 41.646

= 1.773 TOTAL SST 17 68006
p = 4.813
a= 18.073

1 2
B1 = 0.094 Coefficient of Determination R = .99939

a = 4.877

B2 = 0.318

Residual Analysis

Pi P.i Residual Chi-square

.0667 .0602 .0065 0.181

.4008 .4273 -. 0265 1.377

.5866 .6289 -. 0423 3.676

.1000 .1018 -. 0018 0.008

,5971 .5054 .0917 16.107

.7223 .7202 .0021 0.010

.3021 .3471 -. 0450 2.575

.7370 .7743 -. 0373 3.821

.9040 .9211 -. 0171 1.935

.5868 .5627 .0241 0.682

.9401 .9010 .0390 6.580

.9722 .9755 -. 0033 0.130

.8125 .7823 .0302 1.540

.9714 .9711 .0003 0.014

.9965 .9950 .0015 0.137

.8681 .8781 -. 0100 0.271

.9948 .9883 .0066 1.420

.9667 .9516 .0151 1.194
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

= 8.008 source d.f.

2 = 1.799 Due to model SSR 6 45745Departure from Model SSE 11 64.694
p = 6.239 TOTAL SST 17 45810

a, = 16.156

B I = 0.113 2
a Coefficient of Determination R= .99859ý2 = 4.869

B2 = 0.291

Residual Analysis

pi P. Residual Chi-square
_. -___ ___ __

.0667 .0592 .0075 0.245

.4008 .4480 -. 0472 4.318

.5866 .6599 -. 0733 11.463

.1000 .0921 .0079 0.181

.5971 .5001 .0970 18.015

.7223 .7115 .0108 0.272

.3021 .3552 -. 0531 3.544

.7370 .7466 -. 0096 0.231

.9040 .8874 .0166 1.319

.5868 .5958 -. 0090 0.097

.9401 .8844 .0557 0.001

.9722 .9581 .0141 1.420

.8125 .8261 -. 0136 0.370

.9714 .9670 .0044 0.230

.9965 .9904 .0061 1.111

.8681 .9151 -. 0469 8.167

.9948 .9875 .0073 1.656

.9667 .9733 -. 0066 0.403
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3. a 3 = 0 ; ,4 = 3 (Third and Fourth Standardized Central Moments)

bI = b = 4.874 ; p 6.158 ; Five Parameters to be Estimated

1 2

Parameter Estimates Chi-squdte Analysis Table

r = 4.383 source d.f.

a = 13.485 Due to Model SSR 4 70566
Departure from Model SSE 13 70.017

B1 = 0.1 TOTAL SST 17 70636

a 2 = 6.426

B2 = 0.242 Coefficient of Determination R =99901

Residual Analysis

pi P.i Residual Chi-square

.0667 .1057 -. 0390 3.861

.4008 .4058 -. 0050 0.049

.5866 .6443 -. 0577 6.967

.1000 .1221 -. 0221 1.090

.5971 .4603 .1358 36.090

.7223 .7168 .0056 0.073

.3021 .3594 -. 0573 4.107

.7370 .7592 -. 0222 1.296

.9040 .9271 -. 0231 3.794

.5368 .5829 .0039 1.873

.9401 .8964 .0437 7.906

.9722 .9782 -. 0060 0.483

.8125 .7985 .0140 0.353

.9714 .9691 .0023 0.068

.9965 .9954 .0011 0.073

.8681 .8876 -. 0195 1.100

.9948 .9869 .0079 1.84V

.9667 .9543 .0124 0.843

SI.| | | i | | | || | -

I!



4: Takahasi Burr - r = 0 ; a3 = 0 ; a4 = 3 (Third and Fourth

Standardized Central Moments); bI = b2 = 4.874

p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

= 13.460 source d.f.

B1 = 0.160 Due to Model SSR 3 34582
. Departure from Model SSE 14 92.619

a2 TOTAL SST 17 34674

B2 = 0.259
22

Coefficient of Determination R2 
= 99733

Residual Analysis

pi P. Residual Chi-square

.0667 .0957 -. 0290 2.333

.4008 .4125 -. 0117 0.270

.5866 .6674 -. 0808 14.102

.1000 .1140 -. 0140 0.463

.5971 .4596 .1375 36.464

.7223 .7144 .0079 0.147

.3021 .3799 -. 0778 7.395

.7370 .7378 -. 0008 14.954

.9040 .8911 .0129 0.822

.5868 .6188 -. 0319 1.246

.9401 .8789 .0612 13.499

.9722 .9564 .0158 1.723

.8125 .8321 -. 0196 0.796

.9714 .9611 .0103 1.086

.9965 .9877 .0088 1.844

.8681 .9128 -. 0446 7.208

.9948 .9830 .0118 3.208

.9667 .9680 .0013 0.013
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APPENDIX II

Data of Plackett and Hewlett (1952): The toxity to Tribolium

castaneum of D.D.T., methoxychlor (MOC), and combinations of the two

applied in Shell Oil P31 as films on filter paper, six-day exposures.

The data as described by Plackett and Hewlett, the translated data, and

thn analyses on this set of data (data set two) are in this appendix.

39I

39 -
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DATA AS DESCRIBED BY PLACKETT AND HEWLETT TRANSLATED DATA

F Ni
D.D.T. MOC Number Observed

Percent Percent of Mortality
w/v w/v Beetles Percent XC(i) X(2) Pi

0.0 0.4 199 7.5 0.0 0.004 .0754

0.0 0.8 148 29.7 0.0 0.008 .2973

0.0 1.6 199 77.9 0.0 0.016 .7789

0.2 0.0 200 14.5 0.002 0.0 .1450

0.2 0.4 150 26.0 0.002 0.004 .2600

0.2 0.8 151 63.6 0.002 0.008 .6358

0.4 0 149 43.6 0.004 0.0 .4362

0.4 0.4 148 66.2 0.004 0.004 .6622

0.4 0.8 150 78.7 0.004 0.008 .7867

0.8 0.0 199 70.9 0.008 0.0 .7085
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BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

a, = 5.787 source d.f.

B1 = 1.071 Due to Model SSR 4 598.86
625Departure from Model SSE 5 21.775

^2 TOTAL SST 9 620.63

B2 = 1.503
22

P = -0.9999 Coefficient of Determination R .96491

Residual Analysis

Pi P. Residual Chi-square

.0754 .0844 -. 0090 0.210

.2973 .3693 -. 0720 3.292

.7789 .7606 .0183 0.365

.1450 .1920 .0470 2.848

.2600 .2764 -. 0164 0.203

.6358 .5613 .0745 3.405

.4362 .4491 -. 0129 0.100

.6622 .5335 .1287 9.845

.7867 .8184 -. 0317 1.013

.7085 .7306 -. 0221 0.494
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BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-Square Analysis Table

a0 = -1.000 source d.f.

a& = 5.448 Due to Model SSR 4 574.90
Departure from Model SSE 5 29.262

1 -1.776 TOTAL SST 9 604.16

a2 = 4.645 ____

B = -2.559 Coefficient of Determination R2 95157
2

Residual Analysis

Pi P. Residual Chi-square

.0754 .0958 -. 0204 0.960

.2973 .3846 -. 0873 4.760

.7789 .7865 -. 0076 0.068

.1450 .2041 -. 0591 4.297

.2600 .2944 -. 0344 0.856

.6358 .5486 .0872 4.638

.4362 .4675 -. 0313 0.586

.6622 .5401 .1221 8.811

.7867 .7312 .0555 2.351

.7085 .7504 -. 0419 1.864

I-
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

r 5.271 source d.f.

b = 2.351 Due to Model SSR 7 573.70
12 Departure from Model SSE 2 23.027
b TOTAL SST 9 596.73

p = 4.271

a = 7.252
^2

B = 0.270 Coefficient of Determination R = .96141

a 2 = 8.206

B = 0.216

Residual Analysis

pi_ P, Residual Chi-square

.0754 .1009 -. 0255 1.430

.2973 .3814 -. 0841 4.440

.7789 .7764 .0025 0.007

.1450 .1889 -. 0439 2.513

.2600 .2862 -. 0262 0.504

.6358 .5423 .0935 5.321

.4362 .4835 -. 0473 1.332

.6622 .5643 .0979 5.768

.7867 .7559 .0308 0.770

.7085 .7387 -. 0302 0.943
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2; Takahasi Burr - r 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

b 1= 0.961 source d.f.

b2 = 5.064 Due to Model SSR 6 544.20
= 3.265 Departure from Model SSE 3 38.249TOTAL SST 9 582.45
= 6.399

B = 0.298

a2 = 7.263 Coefficient of Determination R2 = .93433

B2 = 0.290

Residual Analysis

Pi P. Residual Chi-square

.0754 .0987 -. 0233 1.217

.2973 .4096 -. 1123 7.723

.7789 .7928 -. 0139 0.234

.1450 .1774 -. 0324 1.440

.2600 .2542 .0058 0.026

.6358 .5004 .1354 11.071

.4362 .5490 -. 1128 7.662

.6622 .5844 .0778 3.685

.7867 .7037 .0830 4.953

.7085 .7240 -. 0155 0.239
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3: a 3 = 0 ; a4 = 3 (Third and Fourth Standardized Central Mow.nts)

bI= b= 4.874 ; p = 6.158 ; Five Parameters to be Estimated

Parameter Estimates Chi-s2uare Analysis Table

r 7.158 source d.f.

a. = 9.108 Due to Model SSR 4 577.20

= 0.176 Departure from Model SSE 5 26.296TOTA SST 603.50
a2 = 7.272

2 = 0.245 Coefficient of Determination R2 .95643
I2

Residual Analysis

p. P. Rasidual Chi-square

.0754 .9946 -. 0192 0.854

.2973 .3869 -. 0896 5.005

.7789 .7805 -. 0016 0.003

.1450 .2018 -. 0568 4.002

.2600 .2928 -. 0328 0.780
S.6358 .5586 .0772 3.653

.4362 .4628 -. 0266 0.424

.6622 .5410 .1212 8.757

.7867 .7490 .0377 1.133

.7085 .7484 -. 0399 1.685
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4: Takahasi Burr - r = 0 3 = 0 ; a4 - 3 (Third and FouxUL

Standardized Central Moments); bI = b 2 = 4.874 I
p = 6.158 ; Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

a~ 9.196 source ____

B, = 0.174 Due to Model SSR 3 559.09= 7.270 Departure from Model SSE 6 46.537
a TOTAL SST 9 605.63

B2 = 0.248

Coefficient of Determination R = .92316

Residual Analysis

pi P' i Residual Chi-square

.0754 .0990 -. 0236 1.239

.2973 .4013 -. 1040 6.666

.7789 .7952 -. 0163 0.324

.1450 .2165 -. 0715 6.027

.2600 .2912 -. 0312 0.707

.6358 .5219 .1139 7.855

.4362 .4798 -. 0436 1.135

.6622 .5264 .1358 10.953

.7867 .6727 .1140 8.857

.7085 .7590 -. 0505 2.775



APPENDIX III

Data of Hewlett and Plackett (1950): A study of six day toxicity to

beetles (Tribolium castaneum) of direct sprays of Pyrethins, D.D.T., and

the two together in Shell Oil P31. The data as reproduced by Zeigler and

Moore (1966), and the analyses on this set of data (data set three) are in

this appendix.
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DATA AS REPRODUCED BY ZEIGLER AND MOORE

DEPOSIT

Insecticide (mg./10 sq. cm.) x(1) X(2) Ni Pi

1.2% w/v 2.52 .03024 0 48 .0625
Pyrethins 3.30 .03960 0 48 .0625

4.25 .05100 0 50 .1800

5.33 .06396 0 50 .3200

7.15 .08580 0 50 .4000

9.53 .11436 0 50 .6000

12.28 .14739 0 49 .7551

15.58 .18696 0 50 .7000

2.0% w/v 2.45 0 .0490 49 .1633
D.D.T. 3.18 0 .0636 50 .1600

4.25 0 .0850 50 .3200

5.48 0 .1096 50 .4200

7.24 0 .1448 50 .5000

9.54 0 .1908 50 .5600

12.36 0 .2472 50 .7000

15.54 0 .3108 50 .7400

1.2% w/v 2.74 .02964 .0494 50 .2800
Pyrethins 3.20 .03840 .0640 49 .3673

plus 4.10 .04920 .0820 50 .4400

2.0% w 5.34 .06408 .1068 50 .7200

D.D.T. 7.11 .08532 .1422 50 .8400

9.60 .11520 .1920 50 .9000

12.45 .14940 .2490 50 1.0000

15.65 .18780 .3130 50 1.0000
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BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

a,= 2.827 source i.E.

B = 1.231 Due to Model SSR 4 11176= 1.698 Departure from Model SSE 19 11.805

2 9 TOTAL SST 23 11188

B2 = 0.882

p= -0.686 Coefficiern.t of Determination R = .99894

Resbi.ual Analysis

Pi P. Residual Chi-square

.0625 .0696 -. 0071 0.037

.0625 .1257 -. 0632 1.744

.1800 .2017 -. 0217 0.146

i .3200 .2888 .0312 0.237

.4000 .4225 -. 0225 0.104

.6000 .5629 .0371 0.280

.7551 .6809 .0742 1.241

.7000 .7773 -. 0773 1.727

.1633 .1677 -. 0044 0.007

j .1600 .2318 -. 0718 1.447

.3200 .3166 .0034 0.003

.4200 .4002 .0198 0.082

.5000 .4972 .0028 0.002

.5600 .5934 -. 0334 0.231

- .7000 .6790 .0210 0.101

.7400 .7476 -. 0076 0.015

.2800 .2358 .0442 0.542

.3673 .3506 .0167 0.060

.4400 .4896 -. 0496 0.492

.7200 .6559 .0642 0.912

.8400 .8215 .0185 0.117

.9000 .9364 -. 0364 1.109

1.0000 .9816 .0184 0.939

1.0000 .9954 .0046 0.231
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BIVARIATE LOGIT ANALYSIS

Parameter EstiImaLes Chi-sguarc Analysis Tablc

a0 - -1.000 source d.f.

i = 2.338 Due to Model SSR 4 3165.4
1 Departure from Model SSE 19 15.603

B = -2.090 TOTAL SST 23 3181.0

2 = 1.960

B2 = -1.520 Coefficient of Determination R = .99509

Rciidual Analysis

Pi P. Residual Chi-square

.0625 .0813 -. 0188 0.227

.0625 .1346 -. 0720 2.140

.1800 .2087 -. 0287 0.250

.3200 .2975 .0225 0.121

.4000 .4390 -. 0390 0.309

.6000 .5879 .0121 0.030

.7551 .7079 .0472 0.528

.7000 .7994 -. 0994 3.082

.1633 .1674 -. 0041 0.006

.1600 .2301 -. 0701 1.385

.3200 .3171 .0029 0.002

.4200 .4059 .0141 0.041

.5000 .5105 -. 0105 0.022

.5600 .6133 -. 0533 0.600

.7000 .7016 -. 0016 0.001

.7400 .7690 -. 0290 0.237

.2800 .2442 .0358 0.347

.3673 .3493 .0180 0.070

.4400 .4754 -. 0354 0.252

.7200 .6266 .0934 1.865

.8400 .7816 .0584 0.999

.9000 .9002 -. 0002 0.000

1.0000 .9578 .0422 2.201

1.0000 .9826 .0174 0.888
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BIVARIATE BURRIT ANALYSES

Parameter Estimates Chi-square Analysis Table

b 6.323 source d.f.

= 3.933 Due to Model SSR 7 4258.4
Departure from Model SSE 16 13.227

b 2= 2.941 TOTAL SST 23 4271.6

= 5.323

a• = 4.863

2B = 0.239 Coefficient of Determination R .99690
a2 = 4.760

"tii•2B 0.183
2 Residual Analysis

SP. Residual Chi-square

.0625 .0622 .0003 0.000

.0625 .1216 -. 0591 1.569

.1800 .2025 -. 0225 0.156

.3200 .2947 .0253 0.154

.4000 .4346 -. 0346 0.244

.6000 .5784 .0216 0.095

.7551 .6963 .0588 0.802

.7000 .7898 -. 0898 2.429

.1633 .1666 -. 0033 0.004

.1600 .2384 -. 0784 1.691

.3200 .3298 -. 0098 0.022

.4200 .4161 .0039 0.003

.5000 .5120 -. 0120 0.029

.5600 .6034 -. 0434 0.393

.7000 .6820 .0180 0.075

.7400 .7438 -. 0038 0.03ý

.2800 .2261 .0540 0.832

.3673 .3475 .0198 0.085

.4400 .4875 -. 0475 0.451

.7200 .6463 .0737 1.187

.8400 .8007 .0393 0.484

.9000 .9135 -. 0135 0.115

1.0000 .9660 .0340 1.759

1.0000 .9873 .0127 0.644
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Paropeter Estimates Chi-square Analysis Table
1 = -. J 1 source 1178f.

b2 = 2.939 Due to Model SSR 6 1178.8

= 6.740 veparture trom Model SSE 17 29.737
TOTAL SST 23 1208.5

a1 = 4.6752
B1 = 0.243 Coefficient of Determination R = .97539

a 2 = 4.701
B2 = 0.176
2 =Residual Analysis

Pi P i Residual Chi-square

.0625 .0540 .0085 0.067

.0625 .1148 -. 0523 1.292

.1800 .2011 -. 0211 0.138

.3200 .3017 .0184 0.080

.4000 .4552 -. 0552 0.614

.6000 .6110 -. 0109 0.025

.7551 .7346 .0205 0.106

.7000 .8282 -. 1282 5.772

.1633 .1707 -. 0074 0.019

.1600 .2469 -. 0869 2.032

.3200 .3444 -. 0244 0.132

.4200 .4361 -. 0161 0.053

.5000 .5373 -. 0373 0.280

.5600 .6326 -. 0725 1.132

.7000 .7132 -. 0132 0.042

.7400 .7752 -. 0352 0.355

.2800 .2137 .0j63 1.310

.3673 .3256 .0417 0.387

.4400 .4503 -. 0103 0.022

.7200 .5888 .1312 3.554

.8400 .7267 .1134 3.234

.9000 .8406 .0594 1.318

1.0000 .9088 .0912 5.019

1.0000 .9478 .0522 2.754
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3: ' 0 ;- 3 (Third and Fourth Standardized Central Moments)

b b2 = 4.874 ,.15k ; Five Parameturs to be Estimated

Parameter Estimates Chi-square Analysis Table

S= 7.129 source d.f.

a1 = 5.499 Due to Model S3R 4 8668.4
01 Departure from Model SSE 19 32.579

= 0.200 TOTAL SST 23 8701.0
a 2 = 5.056

B2 = 0.207 Coefficient of Determination R =99626

Residual Analysis

P P, Residual Chi-square

.0625 .0679 -. 0054 0.022

.0625 .1215 -. 0590 1.566

.1800 .1937 -. 0137 0.060

.3200 .2771 .0429 0.460

.4000 .4076 -. 0076 0.012

.6000 .5483 .0517 0.540

.7551 .6695 .0856 1.624

.7000 .7699 -. 0699 1.378

.1633 .0884 .0749 3.408

.1600 .1525 .0075 0.022

.3200 .2532 .0668 1.178

.4200 .3654 .0546 0.644

.5000 .5046 -. 0046 0.004

.5600 .6438 -. 0838 1.530

.7000 .7602 -. 0602 0.995

.7400 .8431 -. 1031 4.014

.2800 .1542 .1258 6.062

.3673 .2656 .1018 2.601

.4400 .4094 .0306 0.194

.7200 .5903 .1297 3.477

.8400 .7803 .0597 1.041

.9000 .9197 -. 0197 0.263

1.0000 .9767 .0233 1.193

1.0000 .9942 .0058 0.291
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4: Takaha'u liurr -- r 3 ; 0 4 = 3 (Third and Fourth

Standardized Central Moments); bI = b2 = 4.874

p = 6.158 Four Parameters to be Estimated

Parameter Lstimates Chi-s uare Analysis Table

a = 4.932 source d.f. 1
=0.246 Due to Model SSR 3 1309.0

I= 4.585 Departure from Model SSE 20 114.16
2 TOTAL SST 23 1423.2

B2 = 0.237

Coefficient of Deteru.ination R= .91978

Residual Analysis

Pi P. Residual Chi-square1 1 _ 1

.0625 .0377 .0248 0.813

.0625 .0849 -. 0224 0.309

.1800 .1588 .0212 0.168

.3200 .2533 .0667 1.176

.4000 .4114 -. 0114 0.027

.6000 .5849 .0151 0.047

.7551 .7280 .0271 0.182

.7000 .8357 -. 1357 6.706

.1633 .0482 .1151 14.133

.1600 .0989 .0611 2.094

.3200 .1906 .1294 5.423

.4200 .3043 .1157 3.162

.5000 .4569 .0431 0.374

.5600 .6174 -. 0573 0.696

.7000 .7533 -. 0533 0.764

.7400 .8480 -. 1080 4.521

.2800 .0827 .1973 25.672

.3673 .1693 .1978 13.626

.4400 .2940 .1460 5.132

.7200 .4632 .2568 13.259

.8400 .6569 .1831 7.440

.9000 .8241 .0759 1.987

1.0000 .9172 .0828 4.513

1.0000 .9625 .0375 1.947



I
APPENDIX IV

DaLo vr J. T. Martin (1942): Thc toxicitics to Macropiphoniella

sanborni of rotenone, a deguelin concentrate, and of a mixture. Tests

of 17 November 1938. Fivefold replication. Results one day after spraying.

Medium 0.5% saponin, containing R% alcohol. Tattersfield apparatus. The

data as described by Martin, the translated data, and the analyses of this

set of data (data set four) are in this appendix.
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DATA AS DESCRIBED BY MARTIN TRANSLATED DATA

CONCENTRATIONS (mg./£.)
Ni

X(2) Number of
X(i) Deguelin Insects Percent

Rotenone Concentrate Used Mortality Pi

10.2 0.0 50 88.0 .8800

7.7 0.0 49 85.7 .8571

5.1 0.0 46 52.2 .5217

3.8 0.0 48 33.3 .3333

2.6 0.0 50 12.0 .1200

0.0 50.5 48 100.0 1.0000

0.0 40.4 50 94.0 .9400

0.0 30.3 49 95.9 .9592

0.0 20.2 48 70.8 .7083

0.0 10.1 48 37.5 .3750

0.0 5.1 49 32.6 .3265

5.1 20.3 50 96.0 .9600

4.0 16.3 46 93.5 .9348

3.0 12.2 48 79.2 .7917

2.0 8.1 46 58.7 .5970

1.0 4.1 46 47.8 .4783

0.5 2.0 47 14.9 .1489
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BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-sguare Analysis Table

a -2.775 sourc._p d.f.

B, = 1.762 Due to Model SSR 4 1656.0

-. 4Departure from Model SSE 12 27.146
a2 = -1.645 TOTAL SST 16 1683.1

B2 = 0.823
2 2

= -0.530 Coefficient of Determination R = .98387

Residual Analysis

Pi Pi Residual Chi-squacc

.8800 .9059 -. 0259 0.392

.8571 .7940 .0631 1.193

.5217 .5377 -. 0160 0.047

.3333 .3359 -. 0026 0.001

.1200 .1374 -. 0174 0.128

1.0000 .9432 .0568 2.893

.9400 .9190 .0210 0ý297

.9592 8773 .0819 3.053

.7083 .7962 -. 0879 2.284

.3750 .6017 -. 2267 10.297

.3265 .3805 -. 0540 0.605

.9600 .9649 -. 0049 0.036

.9348 .9084 .0264 0.386

.7917 .7893 .0024 0.102

.5870 .5B26 .0044 0.004

.A783 .33.70 .1613 5.528

.1489 .1506 -. 0017 0.001

Hi
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BIVARIATE LOGIT ANALYSIS

PDi~j-• ctimR• •Chi-qauare Analysis Table

&0 =-1.000 source d.f.

-1.568 Due to Mudel SSTZ 4 1365.2
B1 = 964 Departure from Model SSE 12 29.616

TOTAL S0-T 16 1394.9
a2 = -2.029

2 2
B = -1.450 Coefficient of Determination R = .97877
2

Residual Analysis

P P Residval Chi-square

.8800 .9034 -. 0234 0.315

.8571 .8026 .0545 0.918

.5217 .5453 -. 0236 0.103

.3333 .3392 -. 0006 0.000

.1200 .1400 --. 0200 0.166

1.0000 .9397 .0603 3.082

.9400 .9185 .0215 0.309

.9592 .8813 .0779 2.84'

.7083 .8048 -. 0965 2.848

.3750 .6014 -. 2264 10.267

.3265 .3590 -. 0325 0.225

.9600 .9505 .0095 0.095

.9348 .8865 .0484 1.069

.7917 .7672 .0245 0.161

.5870 .5722 .0148 0.041

.4783 .2985 .1798 7.099

.1489 .1352 .0137 0.076

.1i
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Paramotpr EFtima1ep Chi-square Analysis Table

r=7.109 source d.f.

b = 4.891 Due to Model SSR 7 1655.7
1 Departure from Model SSE 9 27.125

b 2= 4.11 TOTAL SST 16 1682.8

p = 6.109

a, = 0.695
2

B = 0.286 Coefficient of Determination R .98388
1
2 = 2.730

B = 0.136
2

Residual Analysis

Pi P Residual Chi-square

.8800 .9125 -. 0325 0.660

.8571: .802J. .0550 0.934

.5217 .5430 -. 0213 0.084

.3333 .3407 -. 0074 0.012

.1200 .1434 -. 0234 0.222

1.0000 .9456 .0544 2.763

.9400 .9214 .0187 0.240

.9592 .8786 .0806 2.983

.7083 .7937 -. 0854 2.135

.3750 .5888 -. 2138 9.065

.3265 .3629 -. 0364 0.281

.9600 .9637 -. 0037 0.019

.9348 .9020 .0328 0.559

.7917 .7760 .0157 0.068

.5870 .5663 .0207 0.080

.4783 .2997 .1786 6.991

.1489 .1403 .0086 0.029
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2: Takahasi Burr - r 0 ; Seven Parameters to be Estimated

= 4.048 source d.f.

b2 = 4.676 Due to Model SSR 6 1683.0
Departure from Model SSE 10 32.782

p - 17.880 TOTAL SST 16 1715.8

a, = 0.425 I

B1 = 0.226

2 = 2.438 Coefficient of Determination R= .98089

B2 = 0.112

Residual Analysis

pi P. Residual Chi-square

.8800 .9119 -. 0319 0.632

.8571 .7994 .0577 1.019

.5217 .5436 -. 0219 0.089

.3333 .3454 -. 0121 0.031

.1200 .1476 -. 0276 0.303

1.0000 .9662 .0338 1.682

.9400 .9453 -. 0053 0.027

.9592 .9053 .0539 1.658

.7083 .8202 -. 1119 4.075

.3750 .6047 -. 2297 10.592

.3265 .3655 -. 0390 0.322

.9600 .9125 .0475 1.411

.9348 .8463 .0885 2.772

.7917 .7359 .0558 0.769

.5870 .5561 .0309 0.178

.4783 .2980 .1803 7.146

.1489 .1351 .0138 0.076
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3: a 3 = 0 ; a4 = 3 (Third and Fourth Standardized Central Moments)

bI = b2 = 4.874 ; p 6.158 ; Five Parameters to be Estimated A

Parameter Estimates Chi-square Analysis Table

r = 7.158 source d.f.

a 0.689 Due to Model SSR 4 167. .8= Departure from Model SSE 12 27.130
TOTAL SST 16 1700.9

a = 2.70222

B2 = 0.136 Coefficient of Determination R * .98405

Residual Analysis

Pi P, Residual Chi-square

.8800 .9124 -. 0324 0.657

.8571 .8020 .0551 0.937

.5217 .5428 -. 0211 0.083

.3333 .3405 -. 0072 0.011

.1200 .1433 -. 0233 0.220

1.0000 .9461 .0539 2.737

.9400 .9220 .0180 0.225

.9592 .8796 .0796 2.931

.7083 .7951 -. 0868 2.222

.3750 .5909 -. 2159 9.257

.3265 .3649 --. 0384 0.311

.9600 .9641 -. 0041 0.024

.9348 .9029 .0319 0.533

.7917 .7775 .0142 0.056

.5870 .5683 .0187 0.066

.4783 .3014 .1769 6.837

.1489 .1412 .0077 0.023

*1 I
J
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4: Takahasi Burr - r = 0 ; (3 = 0 ; c4 = 3 (Third and Fourth

Standardized Central Moments); b, = b2 = 4.874

p = G.158 Four PaxaiwLerb Lu be Estimated

Parameter Estimates Chi-square Analysis Table

a 0.743 source d.f.

BI = 0.283 Due to Model SSR 3 1483.8
1 Departure from Model SSE 13 34.593

a 2.458 TOTAL SST 16 1518.4

B2 0.145
Coefficient of Determination R2 = .97722

Residual Analysis

Pi P. Residual Chi-square

.8800 .9176 -. 0376 0.935

.8571 .8128 .0443 0.631

.5217 .5617 -. 0400 0.298

.3333 .3600 -. 0267 0.149

.1200 .1571 -. 0371 0.519

1.0000 .9596 .0404 2.019

.9400 .9391 .0009 0.001

.9592 .9009 .0583 1.867

.7083 .8202 -. 1119 4.074

.3750 .6113 -. 2363 11.284

.3265 .3706 -. 0441 0.408

.9600 .9052 .0548 1.750

.9348 .8417 .0931 2.991

.7917 .7370 .0548 0.742

.5870 .5635 .0235 0.103

.4783 .3025 .1758 6.734

.1489 .1343 .0147 0.087



APPENDIX V

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanborni of rotenone, £-elliptone, and of a mixture. Tests of 7 July 1941.

Fivefold replication. Results one day after spraying. Medium 0.5%

saponin, containing 5% alcohol. Tattersfield apparatus. The data as

described by Martin, the translated data, and the analyses of this set

of data (data set five) are in this appendix.
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DATA AS DESCRIBED BY MARTIN TRANSLATED DATA

CONCENTRATIONS (mg./i.)
Ni

Number of

X(i) X(2) Insects Percent
Rotenone Z-Elliptone Used Mortality pi

10.2 0.0 28 100.0 1.0000

7.65 0.0 40 84.7 .8500

5.10 0.0 48 38.4 .3750

3.06 0.0 49 8.4 .0816

0.0 50.5 51 91.9 .9216

0.0 37.9 49 91.6 .9184

0.0 23.3 49 39.6 .3878

0.0 15.2 46 6.9 .0652

5.1 25.3 50 91.8 .9200

3.8 18.9 48 66.0 .6667

2.55 12.6 44 32.8 .3182

1.5 7.6 49 10.4 .1020

ith
Here [NiC percent mortality)/100] was rounded off to the nearest

integer -- which should be rf the number that responded to the ith

mixture of stimulants, and then pi was computed as rI/Ni.

. . .2.



65

BIVARIATE NORMIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

a1=-4.184 source d.f.

B = 2.545 Due to Model SSR 4 921.36
1 Departure from Model SSE 7 28.947

a2 = -4.978 TOTAL SST 11 950.30

2•2= 1.618

2
p = -0.743 Coefficient of Determination R .96954

Residual Analysis

Pi Pi Residual Chi-square

1.0000 .9577 .0423 1.236

.8500 .8396 .0104 0.032

.3750 .4846 -. 1096 2.306

.0816 .0904 -. 0088 0.046

.9216 .9145 .0071 0.032

.9184 .8172 1012 3.359

.3878 .5467 -. 1589 4.993

.0652 .2830 -. 2178 10.753

.9200 .9217 -. 0017 0.002

.6667 .6173 .0492 0.491

.3182 .2258 .0924 2.149

.1020 .0458 .0562 3.548
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BIVARATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

ao = -1.000 sourue d.f.

al = -1.611 Due to Model SSR 4 675.39
Departure from Model SSE 7 30.169

B1 = -3.509 TOTAL SST 11 705.56

a2= -3.136

B 2= -3.145 Coefficient of Determination R = .95724

Residual Analysis

pi P. Residual Chi-square

1.0000 .9240 .0760 2.303

.8500 .8159 .0341 0.310

.3750 .5164 -. 1414 3.844

.0316 .1510 -. 0694 1.841

.9216 .9221 -. 0005 0.000

.9184 .8275 .0909 2.836

.3878 .5095 -. 1217 2.904

.0652 .2133 -. 1481 6.010

.9200 .8549 .0651 1.707

.6667 .5743 .0924 1.678

.3182 .2141 .1041 2.835

.1020 .0441 .0579 3.902
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BIVARIATE BURRIT ANALYSES

1: C~pnp.ra1 CR= - 1=t a=-•tect .h Eti...4t..d.

Parameter Estimates Chi-square .Analysis Table

r = 7.345 source d.f.

b = 6.078 Due to Model SSR 7 1081.9
53 Departure from Model SSE 4 29.221

2 TOTAL SST 11 1111.1
p = 6.345

a = 0.224
Coefficient of Determination R2 = .97370B = 0.373

a = -0.483

B = 0.260
2

Residual Analysis

Pi P. Residual Chi-square

1.0000 .9691 .0309 0.893

.8500 .8526 -. 0025 0.002

.3750 .4718 -. 0967 1.803

.0816 .0896 -. 0080 0.039

.9216 .9361 -. 0145 0.180

.9184 .8434 .0750 2.087

.3878 .5585 - 1707 5.794

.0652 .2823 -. 2171 10.704

.9200 .8784 .0416 0.811

.6667 .5871 .0796 1.254

.3182 .2258 .0924 2.151

.1020 .0460 .0560 3.503
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates rhi-•Q1• -e ya 4 Tabile

b1 = 9.296 source d.f.

b2 = 7.696 Due to Model SSR 6 1508.3

= 77.198 Departure from Model SSE 5 31.901
TOTAL SST 11 1540.2

a 1 = 1.655

B1 = 0.183 2

= 0.700 Coefficient of Determination R = .97929

2 = 0.142

Residual Analysis

pi P. Residual Chi-square

1.0000 .9804 .0196 0.559

.8500 .8623 -. 0123 0.051

.3750 .4921 -. 1171 2.631

.0816 .1317 -. 0501 1.074

.9216 .9509 -. 0293 0.935

.9184 .8434 .0751 2.089

.3878 S5262 -. 1384 3.767

.0652 .2614 -. 1962 9.171

.9200 .7874 .1326 5.253

.6667 .5364 .1304 3.280

.3182 .2376 .0806 1.577

.1020 .0602 .0418 1.515
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3: a3 = 4 = 3 (Third and Fourth Standardized Central Moments)

bI = b2 = 4.874 ; p = 6.153 ; Five Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

r = 7.158 source Id.f.
a1 = -0.085 Due to Model SSR 4 862.11

B = 0.414 Departure from Model SSE 7 29.379
TOTAL SST 11 891.49

a2 = -0.588

2 = 0.260 Coefficient of Determination R .96705

Residual Analysis

P. Residual Chi-square

1.0000 .9598 .0402 1.174

.8500 .8426 .0074 0.016

.3750 .4811 -. 1061 2.166

.0816 .0925 -. 0109 0.069

.9216 .9181 .0035 0.009

.9184 .8217 .0697 3.126

.3878 .5500 -. 1622 5.205

.0652 .2887 -. 2235 11.188

.9200 .8762 .0438 0.883

.6667 .5942 .0725 1.046

.3182 .2333 .0849 1.773

.1020 .0504 .0516 2.723
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4: Takahasi Burr - r = 0 ; 3 = 0 ; a 4 = 3 (Third and Fourth

Standardized Central Moments); b1 = b2 = 4.874

p = 6.158 Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

1l = -0.080 source d.f.

B1 = 0.418 Due to Model SSR 3 905.59
Departure from Model SSE 8 36.603

2 = -0.488 TOTAL SST 11 942.19

b .2542

Coefficient of Determination R .96115

Residual Analysis

p p.P Residual Chi-square

1.0000 .9659 .0341 0.989

.8500 .8588 -. 0088 0.025

.3750 .5037 -. 1287 3.179

.0816 .0993 -. 0177 0.172

.9216 .9207 .0009 0.001

.9184 .8294 .0890 2.741

.3878 .5697 -. 1819 6.615

.0652 .3118 -. 2466 13.032

.9200 .7923 .1277 4.954

.6667 .5576 .1091 2.317

.3182 .2484 .0698 1.147

.1020 .0611 .0409 1.430



APPENDIX VI

Data of J. T. Martin (1942): The toxicities to Macrosiphoniella

sanborni of rotenone, £-a-toxicarol, and of a mixture. Tests of

24 September 1941. Fivefold replication. Results one day after spraying.

Medium 0.5% saponin, containing 5% of alcohol. Tattersfield apparatus.

The data as described by Martin, the translated data, and the analyses of

this set of data (data set six) are in this appendix.
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DATA AS DESCRIBED BY MARTIN TRANSLATED DATA

CONCENTRATIONS (mg./Z.)
Ni

Number of

X(1) X(2) Insects Percent
Rotenone Z-a-Toxicarol Used Mortality Pi

1.06 0.0 51 100.0 1.0000

0.85 0.0 48 97.9 .9792

0.64 0.0 48 93.8 .9375

0.42 0.0 48 62.5 .6250

0.21 0.0 48 12.5 .1250

0.0 9.75 49 100.0 1.0000

0.0 7.80 48 97.9 .9792

0.0 5.85 52 98.1 .9808

0.0 3.90 49 87.7 .8776

0.0 1.95 48 50.0 .5000

0.53 4.88 48 100.0 1.0000

0.42 3.90 48 100.0 1.0000

0.32 2.-33 49 89.8 .8980

0.21 'ý.95 50 82.0 .8200

0.11 0.98 50 30.0 .3000
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BIVARIATE NORMIT ANALYSIS 
j

1: Using Relative Change in Weighted Sum of Squares Due

To Error as Part of the Convergence Criteria

Parameter Estimates Chi-square Analysis Table

a1I = 2.372 source d.f.

B1 = 2.212 Due to Model SSR 4 30672

a2 =0.580 Departure from Model SSE 10 10.144
2 138TOTAL SST 14 30682

B2 = 1.328

22
f= -0.432 Coefficient of Determination R2 

= .99967

Unweighted Sum of Squares Due to Error = .03204

Residual Analysis

P. P. Residual Chi-square
_1X I - _

1.0000 .9938 .0062 0.318

.9792 .9779 .0013 0.004

.9375 .9169 .0206 0.267

.6250 .6747 -. 0497 0.541

.1250 .1401 -. 0151 0.090

1.0000 .9928 .0072 0.357

.9792 .9845 -. 0053 0.089

.9808 .9614 .0194 0.528

.8776 .8903 -. 0127 0.081

.5000 .6207 -. 1207 2.971

1.0000 .9985 .0015 0.072

1.0000 .9893 .0107 0.518

.8980 .9385 -. 0405 1.391

.8200 .7130 .1070 2.796

.3000 .2780 .0220 1.210
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BIVARIATE NORMIT ANALYSIS

2: Using Relative Change in Unweighted Sum of Squares

Due to Error as Part of the Convergence Criteria

Parameter Estimates Chi-square Analysis Table

a1  2.279 source d.f.

B = 2.063 Due to Model SSR 4 .19"1018
1 5Departure from Model SSE 10 .78.1015

a 2 =0.589 TOTAL SST 14 .19,1018

B2 = 1.290
22

P = -0.9999 Coefficient of Determination R = .99592

Unweighted Sum of Squares Due to Error = .03127

Residual Analysis

Pi P. Residual Chi-square

1.0000 .9918 .0082 0.422

.9792 .9740 .0052 0.050

.9375 .9129 .0246 0.367

.6250 .6878 -. 0628 0.882

.1250 .1736 -. 0496 0.790

1.0000 .9906 .0094 0.465

.9792 .9808 -. 0016 0.006

.9808 .9545 .0263 0.828

.8776 .8784 -. 0008 0.000

.5000 .6074 -. 1074 2.321

1.OO 1.0000 .0000 0.000

1.0000 1.0000 .0000 0.000

.8980 1.0000 -. 1020 0.78.1015

.8200 .7810 .0390 0.445

.3000 .2806 .0194 0.928
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BIVARIATE LOGIT ANALYSIS

Parameter Estimates Chi-square Analysis Table

a 0 = -1.000 source d.f.

a, = 1.053 Due to Model SSR 4 20170
= -4.027 Departure from Model SSE 10 11.975

B1  TOTAL SST 14 20182

a 2 = -0.436

B2 = -2.332 Coefficient of Determination R = .99941

Residual Analysis

Pi P. Residual Chi-square

1.0000 .9888 .0113 0.580

.9792 .9731 .0061 0.069

.9375 .9201 .0174 0.198

.6250 .6786 -. 0536 0.632

.1250 .1146 .0104 0.051

1.0000 .9865 .0135 0.670

.9792 .9779 .0014 0.004

.9808 .9570 .0238 0.717

.8776 .8962 -. 0186 0.183

.5000 .6317 -. 1317 3.579

1.0000 .9979 .0021 0.102

1.0000 .9869 .0131 0.635

".8980 .9286 -. 0306 0.690

.8200 .6976 .1225 3.554

.3000 .2652 .0348 0.311
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BIVARIATE BURRIT ANALYSES

Paax:ee Gneiftd! Cabe - yL ;aLcULteLuLb LuJ lj= jbi,~a
Parameter Estimates Chi-square Analysis Table

r 8.817 source d.f."

b, = 5.045 Due to Model SSR 7 67305
1 Departure from Model SSE 7 9.6604

b2 = 5.TOTAL SST 14 67314
= 7.826

a, = 2.869

B1 = 0.339 Coefficient of Determination R = .999861

a2 = 3.055

B2 = 0.184

Residual Analysis

Pi P Residual Chi-square

1.0000 .9948 .0052 0.266

.9792 .9797 -. 0005 0.001

.9375 .9144 .0231 0.327

.6250 .6434 -. 0184 0.070

.1250 .1202 .0049 0.011

1.0000 .9932 .0068 0.335

.9792 .9851 .0059 0.113

.9808 .9612 .0196 0.536

.8776 .8850 -. 0074 0.026

.5000 .6025 -. 1025 2.107

1.0000 .9994 .0006 0.030

1.0000 .9920 .0080 0.385

.8980 .9355 -. 0375 1.140

.8200 .6866 .1334 4.135

.3000 .2734 .0266 0.179
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table _

b = 4.451 source d.f.

b2 = 5.250 Due to Model sIGR 6 13398= 7.940 Departure from Model SSE 8 13.648
TOTAL SST 14 13412

1 = 2.746

B1 = 0.346 Coefficient of Determination R2 .99898
a 2 = 2.909

B2 = 0.192

Residual Analysis

Pi P. Residual Chi-square1 _ _

1.0000 .9932 .0068 0.349

.9792 .9769 .0023 0.011

.9375 .9139 .0236 0.339

.6250 .6637 -. 0387 0.321

.1250 .1385 -. 0135 0.073

1.0000 .9953 .0047 0.229

.9792 .9894 -. 0102 0.472

.9808 .9708 .0100 0.183

.8776 .9067 -. 0291 0.492

.5000 .6402 -. 1402 4.095

1.0000 .9854 .0146 0.711

1.0000 .9590 .0410 2.051

.8980 .8865 .0115 0.064

.8200 .6844 .1356 4.255

.3000 .2967 .0033 0.003
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3: =c 0 ; a~ 3 (Third and Fourth Standardized Central Moments)
34

b 1 4.874 ;p b .158 IFive Parameters to oe tstimated

Parameter Estimates Chi-sguare Anal sis Table

r= 5.265 source d.f.

a1 = 2.907 Due to Model SSR 4 23681
Departure from Model SSE 10 12.047

Bl = 0.357 TOTAL SST 14 23693

a2 = 3.2152

B 2 = 0.179 Coefficient of Dete~rmination R =.99949

Residual Analysis

p P Residual Chi-square

1.0000 .9943 .0057 0.294

.9792 .9808 -.0016 0.006

.9375 .9267 .0108 0.083

.6250 .6014 -.0684 1.056

.1250 .1561 -.0311 0.353

1.0000 .9826 .0174 0.869

.9792 .9697 .0095 0.148

.9808 .9397 .0411 1.549

.8776 .8637 .0139 0.081

.5000 .6229 -.1229 3.086

1.0000 .9980 .0020 0.095

1.0000 .9868 .0132 0.642

.8980 .9297 -.0317 0.755

.8200 .7131 .1069 2.792

.3000 .3326 .0326 0.240



4: Takahasi Burr -r = 0; a 3  0 a4 = 3 (Third and Fourth

p = 6.158 Four Parameters to be Estimated

Parameter Estimates Chi-sq~uare Analysis Table

a 2.741 source d.f.

B, 0.357 Due to Model SSR 3 6862.7
1Departure from Model SSE 11 23.480

a 2 =3.171 TOJTAL SST 14 6886.2

B 2=0.189

Coefficient of Determination R = 99659

Residual Analysis

Pi P. Residual Chi-square

1.0000 .9B57 .0143 0.741

.9792 .9567 .0225 0.586

.9375 .8604 .0771 2.374

.6250 .5544 .0706 0.969

.1250 .0863 .0387 0.911

1.0000 .9914 .0086 0.423

.9792 .9840 -.0048 0.070

.9808 .9648 .0160 0.393

.8776 .9088 -.0312 0.575

.5000 .6934 -.1934 8.444

1.0000 .9773 .0227 1.114

1.0000 .9479 D0521 2.640

.8980 .8801 .0179 0.148

.8200 .7154 .1046 2.685

.3000 .3814 -. 0814 1.405



APPENDIX VII

Data of Ashford and Smith (1964). Exposure to dust and prevalence

of pneumoconiosis for groups of mine workers. The data as described by

Ashford and Smith, the computed pi , and the analyses on this set of data

(data set seven) are in this appendix.
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DATA AS PRESFNTED BY ASHFORD AND SMITH COMPUTED DATA

Period Spent (Years)
ri

Ni Number
X(1) X(2) Number of Observed With

Coal-Getting HRAlauq Men Pneumoconiosis Pi

2.1 0.5 135 3 .0222
1.9 6.6 18 2 .1111
1.6 12.0 16 1 .0625
1.4 16.9 17 3 .1765
0.7 21.6 14 2 .1429
1.1 27.6 12 3 .2500
1.2 32.4 22 5 .2273
1.5 37.2 31 7 .2258
2.4 41.6 25 5 .2000
1.4 47.1 17 5 .2941
6.6 0.4 80 7 .0875
6.3 6.7 10 1 .1000
7.1 12.0 14 5 .3571
6.4 17.5 8 2 .2500
6.3 21.9 21 11 .5238
6.9 27.2 14 5 .3571
6.2 32.3 13 7 .5385
7.2 37.3 10 7 .7000

12.2 0.2 71 19 .2676
12.0 6.9 8 1 .1250
11.8 11.8 4 2 .5000
11.0 16.7 7 2 .2857
11.5 22.5 6 3 .5000
12.8 29.5 10 6 .6000
12.5 37.8 4 2 .5000
17.0 0.3 106 53 .5000
16.2 6.6 5 2 .4000
16.8 13.2 5 2 .4000
19.5 17.0 6 4 .6667
17.2 21.5 4 1 .2500
21.8 0.2 58 34 .5862
24.7 7.7 3 0 0.0000
26.0 10.8 4 1 .2500
22.0 23.7 3 1 .3333
26.8 0.2 66 43 .6515
27.5 18.2 4 3 .7500
32.5 13.0 2 2 1.0000
31.7 0.2 33 22 .6667
36.8 0.2 20 11 .5500
42.2 1.0 10 8 .8000
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BIVARIATE NURMIT AALY1b

Parameter Estimates Chi-square Analysis Table

a = -2.818 source d.f.

B, = 0.937 Due to Model SSR 4 217.75
1Departure f 1oM Model SSE 35 38.141

a 2 = -2.446 TOTAL SST 39 255.89

B2 = 0.501
2 2

S= -0.320 Coefficient of Determination R = .85095

Residual Analysis

p. P. Residual Chi-square

.0222 .0195 .0027 0.053

.1111 .0800 .0311 0.236

.0625 .1236 -. 0611 0.551

.1765 .1579 .0186 0.044

.1429 .1834 -. 0405 0.153

.2500 .2200 .0300 0.063

.2273 .2451 -. 0179 0.338

.2258 .2703 -. 0445 0.311

.2000 .3030 -. 1030 1.256

.2941 .3091 -. 0150 0.018

.0875 .1488 -. 0613 2.375

.1000 .2025 -. 1025 0.651

.3571 .2719 .0852 0.514

.2500 .2886 -. 0386 0.058

.5238 .3120 .2118 4.390
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Residual Analysis--Continued

Pi pi Residual Chi-square

.3571 .35'13 -. 0002 0.000

.5385 .3611 .1773 1.772

.7000 .1099 .2901 3.480

.2676 .3185 -. 0509 0.847

.1250 .3735 -. 2485 2.112

.5000 .4047 .5953 0.151

.2857 .4146 -. 1289 0.479

.5000 .4580 .0420 0.043

.6000 .5186 .0815 0.266

.5000 .5417 -. 0417 0.028

.5000 .4365 .0635 1.737

.4000 .4717 -. 0717 0.103

.4000 .5267 -. 1267 0.322

.6667 .5947 .0720 0.129

.2500 .5744 -. 3243 1.721

.5862 .5287 .0575 0.771

0.0000 .6260 -. 6260 5.022

.2500 .6594 -. 4094 2.985

.3333 .6586 -. 3253 1.412

.6515 .6047 .0468 0.606

.7500 .7069 .0431 0.036

1.0000 .7376 .2624 0.712

.6667 .6638 .0029 0.001

.5500 .7132 -. 1632 2.603

.8000 .7591 .0410 0.092

-J
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Parameter Estimates Chi-square Analysis Table

a0 = -1.000 source d.f.

a= -2.996 Due to Model SSR 4 221.36
1 Departure from Model SSE 35 39.020

TOTAL SST 39 260.38

a2 = -4.527 -

B2  -1.049 Coefficient of Determination R 85014

Residual Analysis

p. P, Residual Chi-square
2. 1 __ _ _ _ _

.0222 .0291 -. 0069 0.226

.1111 .0802 .0309 0.233

.0625 .1211 -. 0586 0.516

.1765 .1567 .0197 0.050

.1429 .1828 -. 0399 0.150

.2500 .2280 .0220 0.033

.2273 .2592 -. 0320 0.117

.2258 .2912 -. 0654 0.643

.2000 .3297 -. 1297 1.903

.2941 .3416 -. 0475 0.170

.0875 .1446 -. 0571 2.111

.1000 .1909 -. 0909 0.535

.3571 .2575 .0996 0.727

.2500 .2787 -. 0287 0.033

.5238 .3063 .2175 4.674

-I
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Residual Analysis--Continued

ri P'. Residual Chi-square

.3571 .3564 .0007 0.000

.5385 .3674 .1710 1.636

.7000 .4202 .2796 3.209

.2676 .3106 -. 0429 0.612

.1250 .3586 -. 2336 1.898

.5000 .3897 .1103 0.205

.2857 .4020 -. 1163 0.394

.5000 .4515 .0485 0.057

.6000 .5213 .0787 0.248

.5000 .5533 -. 0533 0.046

.5000 .4362 .0638 1.753

.4000 .4631 -. 0631 0.080

.4000 .5200 -. 1200 0.288

.6667 .5945 .0722 1.298

.2500 .5748 -. 3248 1.727

.5862 .5361 .0501 0.586

0.0000 .6290 -. 6290 5.086

.2500 .6632 -. 4132 3.058

.3333 .6666 -. 3333 1.500

.6515 .6178 .0338 0.318

.7500 .7145 .0355 0.025

1.0000 .7447 .2553 0.686

.6667 .6798 -. 0132 0.026

.5500 .7302 -. 1602 3.295

.8000 .7746 .0254 0.037
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BIVARIATE BURRIT ANALYSES

1: General Case - Eight Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

r=8.582 source d.f.

bl = 4.714 Due to Model SSR 7 217.30
.9 Departure from Model SSE 32 38.293

= 5.933 TOTAL, SST 39 255.59S= 7.582

1 1.127
1 2

B1 = 0.147 Coefficient of Determination R =85018

a2 = 3.533

B2 = 0.082

Residual Analysis

Pi P Residual Chi-square

.0222 .0183 .0039 0.113

.1111 .0734 .0377 0.377

.0625 .1170 -. 0545 0.459

.1765 .1528 .0236 0.073

.1429 .1809 -. 0381 0.137

.2500 .2208 .0292 0.060

.2273 .2489 -. 0217 0.055

.2258 .2774 -. 0516 0.412

.2000 .3145 -. 1145 1.520

.2941 .3223 -. 0282 0.062

.0875 .1500 -. 0625 2.448

.1000 .1997 -. 0997 0.622

.3571 .2711 .0860 0.524

.2500 .2908 -. 0408 0.064

.523R .3171 .2067 4.142
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Residual Analysis--Continued

i Residual Chi-square

.3571 .3670 -. 0099 0.006

.5385 .3737 .1648 1.509

.7000 .4274 .2726 3.037

.2676 .3174 -. 0498 0.811

.1250 .3704 -. 2.454 2.065

.5000 .4050 .0950 0.150

.2857 .4188 -. 1331 0.510

.5000 .4677 .0323 0.025

.6000 .5355 .0645 0.167

.5000 .5653 -. 0653 0.069

.5000 .4344 .0656 1.856

.4000 .4689 -. 0689 0.095

.4000 .5303 -. 1303 0.341

.6667 .6034 .0632 0.100

.2500 .5866 -. 3366 1.869

.5862 .5275 .0587 0.802

0.0000 .6271 -. 6271 5.045

.2500 .6642 -. 4142 3.076

.3333 .6754 -. 3420 1.601

.6515 .6048 .0467 0.603

.7500 .7200 .0300 0.018

1.0000 .7466 .2534 0.679

.6667 .6653 .0013 0.000

.5500 .7160 -. 1660 2.73.2

.8000 .7619 .0381 0.080

,1i
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2: Takahasi Burr - r = 0 ; Seven Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

b, = 5.074 source d.f.

b2 = 5.026 Due to Model SSR 6 219.84Departure from Model SSE 33 38.765
p = 6.351 TOTAL SST 39 258.60

a1 = 1.369

B1 = 0. 149 2
a .80Coefficient of Determination R = .85010a 2 = 3.850

B2 = 0.075

Residual Analysis

p. P. Residual Chi-square

.0222 .0222 .0000 0.000

.1111 .0980 .0131 0.035

.0625 .1436 -. 0811 0.856

.1765 .1779 -. 0014 0.000

.1429 .2034 -. 0605 0.317

.2500 .2383 .0317 0.009

.2273 .2622 -_.349 0.139

.2258 .2857 -. 0598 0.544

.2000 .3144 -. 1144 1.517

.2941 .3224 -. 0282 .1

.0875 .1510 -. 0635

.1000 .2117 -. 1117 0 ,

.3571 .2752 .0819 0t171

.2500 .2908 -. 0408 0.064

.5238 .3117 .2121 4.402
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Residual Analysis--Continued

Pi P'. Residual Chi-square

.3571 .3507 .0064 0.003

.5385 .3554 .1831 1.903

.7000 .3960 .3040 3.865

.2676 .3165 -. 0489 0.784

.1250 .3683 -. 2433 2.036

.5000 .3937 .1064 0.190

.2857 .4001 -. 1144 0.382

.5000 .4364 .0636 0.099

.6000 .4876 .1125 0.506

.5000 .5059 -. 0059 0.001

.5000 .4342 .0658 1.867

.4000 .4615 -. 0615 0.076

.4000 .5057 -. 1057 0.223

.6667 .5663 .1004 0.246

.2500 .5428 -. 2928 1.382

.5862 .5276 .0586 0.798

0.0000 .6110 -. 6110 4.712

.2500 .6388 -. 3888 2.620

.3333 .6218 -. 2885 1.062

.6515 .6056 .0460 0.584

.7500 .6760 .0740 0.100

1.0000 .7149 .2851 0.798

.6667 .6666 .0001 0.000

.5500 .7176 -. 1676 2.773

.8000 .7632 .0368 0.075
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3: a 3 = 0 1 a 4 3 (Third and Fourth Standardized Central Moments)

bI = b = 4.874 p = 6.158 p Five Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

r = 4.742 source d.f.

a = 1.259 Due to Model SSR 4 218.53
Departure from Model SSE 35 38.338

BI - 0.151 TOTAL SST 39 256.87

a2 = 3.405
2 2

B2 = 0.078 Coefficient of Determination R = .85075

Residual Analysis

Pi P. Residual Chi-square

.0222 .0211 .0011 0.008

.1111 .0905 .0206 0.093

.0625 .1340 -. 0715 0.704

.1765 .1670 .0094 0.011

.1429 .1913 -. 0485 0.212

.2500 .2261 .0239 0.039

.2273 .2499 -. 0226 0.060

.2258 .2740 -. 0481 0.361

.2000 .3061 -. 1061 1.326

.294) .3103 -. 0162 0.021

.0875 .1528 -. 0653 2.634

.1000 .2139 -. 1139 0.772

.3571 .2820 .0752 0.391

.2500 .2978 -. 0478 0.087

.5238 .3199 .2039 4.013
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Residual Analysis--Continued

Pi .i Residual Chi-squarc

.3571 .3631 -. 0060 0.002

.5385 .3660 .1725 1.666

.7000 .4127 .2873 3.405

.2676 .3187 -. 0511 0.854

.1250 .3793 -. 2543 2.198

.5000 .4103 .0897 0.133

.2857 .4198 -. 1341 0.517

.5000 .4615 .0385 0.036

.6000 .5201 .0800 0.256

.5000 .5420 -. 0419 0.028

.5000 .4353 .0647 1.806

.4000 .4749 -. 0749 0.112

.4000 .5294 -. 1294 0.336

.6667 .5964 .0703 0.123

.2500 .5760 -. 3260 1.740

.5862 .5273 .0589 0.807

0.0000 .6278 -. 6278 5.059

.2500 .6612 -. 4112 3.018

.3333 .6598 -. 3265 1.425

.6515 .6039 .0477 0.626

.7500 .7086 .0414 0.033

1.0000 .7396 .2604 0.704

.6667 .6638 .0029 0.001

.5500 .7139 -. 1639 2.632

.8000 .7605 .0395 0.086
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4: Takahasi Burr - r = 0 3 3= 0; a = 3 (Third and Fourth

Standardized Central Moments); bI=b2= 4.874

p = 6.158 ;Four Parameters to be Estimated

Parameter Estimates Chi-square Analysis Table

a, = 1.313 source d.f.

B,= 0.150 Due to Model SSR 3 219.06
Departure from Model SSE 36 38.766

a 2 = 3.783 TOTAL SST 39 257.83

B = 0.074

Coefficient of Determination R =.84964

Residual Analysis

P. p. Residual Chi-square
1 .L __ _ _ _ _

.0222 .0240 -.0018 0.018

.1111 .1007 .0104 0.021

.0625 .1456 -.0831 0.888

.1765 .1791 -.0026 0.001

.3.429 .2037 -.0608 0.319

.2500 .2380 .0120 0.010

.2273 .2613 -.0341 0.132

.2258 .2845 -.0587 0.524

.2000 .3135 -.1135 1.496

.2941 .3200 -.0259 0.052

.0875 .1566 -.0691 2.894

.1000 .2179 -.1179 0.815

.3571 .2809 .0763 0.403

.2500 .2956 -.0455 0.080

.5238 .3159 .2080 4.202
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Residual Analysis--rofltiflWua

P. p Residual Chi-square

.3571 .3542 .0029 0.001

.5385 .3581 .1804 1.841

.7000 .3983 .3017 3.799

.2676 .3210 -.0534 0.930

.1250 .3735 -.2485 2.110

.5000 .3984 .1016 0.172

.2857 .4045 -.1188 0.410

.5000 .4399 .0601 0.088

.6000 .4899 .1101 0.485

.5000 .5075 -.0075 0.001

.5000 .4363 .0637 1.750

.4000 .4645 -.0645 0.084

.4000 .5079 -.1079 0.233

.6667 .5669 .0997 0.243

.2500 .5441 -.2941 1.395

.5862 .5271 .0591 0.814

0.0000 .6096 -.6096 4.685

.2500 .6369 -.3869 2.588

.3333 .6209 -.2876 1.054

.6515 .6027 .0489 0.658

.7500 .6734 .0766 0.107

1.0000 .7108 .2892 0.814

.6667 .6619 .0048 0.003

.50 .7115 -.1615 2.542

.00 .7563 .0437 0.104



APPENDIX VIII

Listings of FORTRAN subroutines used fn evaluating the functions,

partial derivatives, and the weights are in this appendix.
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1. Bivariate Normal Subroutines

DOUBLE PRECISION FUNCTION F(X,A)
C BIVARIATE NORMAL FUNCTION

DIMENSION X(l) ,A(l)
DOUBLE PRECISION X,A,AA,B,R,S,GOFU,TRA ,C,D
AA=A (1) +A (2) *X (1)
B=A(3) +A (4) *x (2)
IF CDABS(A(5)).LE.O.99999D+00O) GO TO 16
A(5)ftDSIGN(O.9999D+OO,A(5))

16 R-A (5)
S=DSQRT (1. R*R)
C=GOFU (AA)
D=GOFU (B)
FrnC+D-THA (AA,B/AA) -THA(B,AA/B)

1-ITHiA(AA, (B-R*AA)/(AA*S) )+THA(B, (AA-.R*B)/(B*S) )-C*D
RETURN
END

SUBROUTINE PD(X,A,FXA,P)
DIMENSION X (1) A (1) , P(1)
DOUBLE PRECISION X,A,AA,R,S,B,FXA,P ,WATE,GOFU,GPRIME,C,D

C A1=ALPHA1 ,A2=BETA1 ,A3=ALPHA2 ,A4-BETA2 ,AS=RH-O
C BIVARIATE NORMAL PARTIALS

AA-A (1)'+A (2) *X (1)
B=A ( 3) +A (4) *X(2)
R-A (5)
S=DSQRT(l.-R*R)
C=GPRIME (AA)
D= (B-R*AA) IS
P(3.)=C*(l.-GOFU(D))
P (2) =X (1) *P (1)

P(3)-GPRIME(B)*(1.-GOFU( (AA-R*B)/S))
P (4) =X (2) *P (3)

P (5)=-C*GPRIME(D)/S
RETU.N,
END
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DOUBLE PRECISION FUNCTION GPRIME(X)
DOUBLE PRECISION X,A1,A2,A3
Al -X*X*(-0.50 01
IF (Al.LE.-150) GO TO 15
A2=DEXP (Al)
A3 = .398942280401433D+00
GPRIME =A2*A3
GO TO 16

15 GPRIME-O
16 RETURN

END

DOUBLE PRECISION FUNCTION GOFU (U)
DIMENSION Y(160)
DOUBLE PRECISION U,GU,X,XSET,DELTA,GPR,DELK,DELTAX,Y,SUM,TOP
IF(Y(17)-.69146246127D+00)2,5,2

C

2 Y( 1) = .50000000000D+00
Y( 2) = .39894228040D+00
Y( 3) = .OOOOOOOOOOOD+00
Y( 4) = -. 66490380066D-01
Y( 5) = OOOOOOOOOOO0D+00
Y( 6) = .99735570100D-02
Y( 7) = OOOOOOOOOOOD+00
Y ( 8) = -. 1187 3282155D-02
Y( 9) = .59870632568D+00
Y( 10) = .386668116800+OO
Y( 11) = -. 48333514600D-01
Y( 12) = -. 604168932500-01
Y( 13) = .11831641595D-01
Y( 14) = .84709519078D-02
Y( 15) = -. 19305085421D-02
Y( 16) = -. 93949992204D-03
Y( 17) = .69146246127D+00
Y( 18) = .352065326760+00
Y( 19) = -.88016331691D-01
Y( 20) = -.44008165845D-01.
Y( 21) = .20170409346D-01
Y( 22) = .45841839423D-02
V( 23) = -. 30'714032413D-02
Y( 241) = -. 32635023779D-03
Y( 25) .7733726476 3D+00
Y( 26) = .30113743216D+00
Y( 27) -. 11292653706D+00
Y( 28) = -.21957937761D-01
Y( 29) = .229382028400-01
Y( 30) = -.147039761800-03
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Y( 31) = -. 30400470751D-02
Y( 32) = .34322406302D-03
Y( 33) = .84134474606D+00
Y( 34) = .24197072452D+00
Y( 35) = -. 120995362260+00
Y( 36) = OOOOOOOOOOO00+00
Y( 37) = .20164227043D-01
Y( 38) = -. 40328454087D-02
Y( 39) = -. 20164227043D-02
Y( 40) = .76816103022D-03
Y( 41) = .89435022633D+00
Y( 42) = .18264908539D+00
Y( 43) = -. 11415567837D+00
Y( 44) = .1.7123351755D-01
Y( 45) = .1367489897ID-01
Y( 46) = -. 598722750610-02
Y( 47) = -. 575980'79906D-03
Y( 48) = B81561889341D-03
Y( 49) = .93319279874D+00
Y( 50) = .12951759567D+00
Y( 51) = -. 971381967500-01
Y( 52) = .26982832430D0-.1
Y( 53) = .60711372969D-02
Y( 54) = -. 58687660536D-02
Y( 55) = .65770654049D-03
Y( 56) = .55772550961D-03
Y( 57) = .95994084314D+00
Y( 58) = .86277318827D-01
Y( 59) = -. 75492653974D-01
Y( 60) = .29657828346D-01
Y( 61) = -. 39319090611D-03
Y( 62) = -. 43110574348D-02
Y(C 63) = .13098172060D-02
Y( 64) = .18576682170D-03
Y( 65) = .97724986805D+00
Y( 66) = .53990966513D-01
Y( 67) = -. 53990966513D-01
YC 68) = .26995483257D-01
YC 69) = -. 44992472094D-02
YC 70) = -. 22496236047D-02
Y( 71) = .13497741628D-02
Y( 72) = -. 11783742691D-03

~(73) = .98777552735D+00
Y( 74) = .31739651836D-01
Y( 75) = -. 35707108315D-01
Y( 76) = .21490389264D-01
Y( 77) = -. 61371592417D-02
Y( 78) = -. 46183673081D-03
Y( 79) = .99147667294D-03
Y( 80) = - .26370836740D-03
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Y( 81) = .99379033467D+00
Y( 82) = .17528300494D-01
Yf 831 = -21 qI7 n 17n-IlI
Y( 84) = .15337262932D-01
Y( 85) = -. 59340600629D-02
Y( 86) = .66644059169D-03
Y( 87) = .51352442853D-03
Y( p8) = -. 26273974729D-03
Y( 89) - .99702023677D+00
Y( 90) = .90935625017D-02
Y( 91) = -. 12503648440D-01
Y( 92) = .99460839861D-02
Y( 93) = -. 47539913338D-02
Y( 94) = .11227826357D-02
Y( 95) = .11925680315D-03
Y( 96) = -. 18051548644D-03
Y( 97) = .99865010197D+00
Y( 98) = .44318484120D-02
Y( 99) = -. 66477726180D-02
Y(100) = .59093312160D-02
Y(101) = -. 33238863090D-02
Y(102) = .11079621030D-02
Y(103) = -. li079621030D-03
Y(104) = -. 84416160226D-04
Y(105) = .99942297496D+00
Y(106) = .20290480573D-02
Y(107) = -. 32972030931D-02
Y(108) = .32337953413D-02
Y(109) = -. 20779248659D-02
Y(110) .86558186169D-03
Y(111) = -. 19180019295D-03
Y(112) -. 13995370141D-04
Y(113) = .99976737091D+00
Y(114) - .87268269505D-03
Y(115) = -. 15271947163D-*02
Y(116) = .16362800532D-02
Y(117) = -. 11772125938D-02
Y(118) = .57860680771D-03
Y(119) = -. 18055895865D-03
Y(0.20) = .21397716502D-04
Y(121) = .99991158271D+00
Y(122) = .35259568237D-03
Y(123) = -. 66111690444D-03
Y(124) = .76763018349D-03
Y(125) = -. 60946714628D-03
Y(126) = .34195583218D-03
Y(127) = -. 13246010895D-03
Y(128) = .30251745009D-04
Y(129) = .99996832876D+00
Y(130) = .13383022576D-03
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Y(131) = -. 267660451531)-03
Y(1L32) = .33457556441D-03
Y(133) = -.28996548916D-03
Y(134) = .18178605667D-03
Y(135) = -.82528639221D-04
Y'136) - .25518025191D-04
Y(137) = .99998931147D+00
Y(1.38) .47718636540D-04
Y(139) -. 10140210265D-03
Y(1.40) .13569987266D-03
Y(141) = -.12728076426D-03
Y(142) .87833668723D-04
Y(143) -. 45244746779D-04
Y(144) .1701.3635696D-04
Y(145) .99999660233D+00
Y(146) .15983'741107D-04
Y(147) = -. 35963417490D-04

*Y(1.48) = .51281169385D-0)4
Y(149) = -. 51697412642D-04
Y(1.50) = .38835495972D-04
Y(151) - - .22233633626D-04
Y(152) = .9669'7768581D-05
Y(153) = .99999898292D+00
Y(154) = .50295072886D-05
Y(155) = -. 11945079810D-04
Y(156) = .18074?91818D-04
Y(157) = -. 19472968649D-04
Y(158) = .15788101444D-04
Y(159) = -.99025178234D-05
Y(160) = .48400297796D-05

C
5 IF(U) 11,10,12
10 GU-.5D+00

GO TO 100
11 X=DABS (U)

GO TO 13

12 X=U
13 IF(X-7.OD+0O)15,14,14
14 IF(U)141,10,142

141 GU=0.OD+0Or
GO TO 100

142 GU--1.ODAOO
100 GOFU-GU

RETURN
15 IF(X-4.87499D+00)16,16,40
16 XSET=X*4.OD+OO

XSST=XSET+.5D+O0
1IF1X (XSST)
XSET-=DFLOAT(l)
DELTA-X- (XSIT*.25D+00)

201. K=1*8+1
I=K+7
SUM-O.OD+00
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DO 20 J=K,T,l
L=K+I -J

SUM-SUM* DELTA

SUM7Y (I.)+SUM
20 CONTINUE

IF(rJ) 21,10,22
21 GU=1.OD+0O -SUM

GO TO 1.00
22 GU-SUM

GO TO 100

40 XSET=-X*X
IF (XSET.LE.-300) GO TO 101

GPR-(DEXP(XSET*.5D+00) )*.398942280401433D+00

GO TO 102

101 GPR=O

102 DELTA=1. OD+00/X

SUM-DELTA
TOP=1. 0D400

41 DELK=TOP/XSET
DELTAX=DELTA*DELK
IF (DABS(DELTA)-DABS (DELTAX) )45,45,43

43 DELTA=DELTAX

SUM=SUM+DELTA
IF(DABS(GPR*DELTA)-.5D-9)45,45,42

42 TOP=TOP+2.OD+O0
GO To 41

45 SUM=GPR*SUM
IF(U) 22,10,21

END

DOUBLE PRECISION FUNCTION TfHA(HX,AX)

DOUBLE PRECISION HX,AX,AA,U,H,A,SUM,C,DA,TA,TX,X,Y,Z ,GOFU

DIMENSION AAC9) ,U(9)
DATA AA(l) ,AA(9) ,AA(2) ,AA(8) ,AAC3) ,AA(7) ,AA(4) ,AA(6) ,AA(5)/2*.4063

17194181E.-1,2*.903240-~0347E-1,2*. 1303053482,2*.15617353852, .1651196
2775/,U(I) ,U(2) ,U(3) ,U(4) ,t(5) ,U(6) ,U(7) ,U(8) ,U(9)/.15919880246E-1,
3.81984446337E-1,.19331428365,.3378732883,.5, .6621267117,.806685716
435, .91801555366, .98408011975/

H=HX
A=AX
IFCDABS(H).LE.5.77)GO TO 10

11 THA=O.
RETURN

10 IF (DABS(A).LE.1.)GO TO 13

12 H--A*H

IF (DABS(H).LE.5.77)GO TO 15

GO TO 16
15 A:--1 ./A
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13 SUM=O.
DO 61 M-=1,9,1
DA=~1.+A**2*U (N)**2
C=-5*9**2*flA

TA-DEXP (C)/DA * AA(M)
SUM=SUM+TA

61 CONTINUE
TX=A/6. 283185 30 72*SUM
GO TO 17

16 TX-O.
17 IF (DABS (AX).LE.1.)GO TO 20
14 X=GOFU(HX)

Y=GOFU (H)
Z-x*Y
TX-. 5*X+.5*Y..Z.TX

18 IF(AX)21,20,20
21 TX=TX-. 5D+00
20 THA=TX

RETUR~N
END
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2. Bivariate Logistic Subroutines

DOUBLE PRECISION FUNCTION F(X,A)
C BIVARIATE LOGISTIC (GUMBEL) FUNCTION

DIMENSION Xci) ,A(l)

DOUBLE PRECISION X,A,C,CC,B,BB,D,E,BC,DE
IF (DAI3S(A(1)).GE.1.OD+0O) A(1)-DSIGN(1.OD-I-O,A(1))

C=A(3) *(X (1) +A (2))
IF (DABS(C).GT.150.OD+OO) C=DSIGN(15O.OD+OO,C)

CC=DEXP (C)
B=A (5) *(X (2) +A (4))
IF (DABS(B).GT.150.OD+OO) B=-DSIGN(150.OD+OO,B)
BB=DEXP (B)

(=1./ +CC)
(=1./ +BB)

BC=BB*CC

DE=D*E

F=D+E-DE* (i.+A(1) *BC*DE)
RETURN
END

SUBROUTINE PD(X,A,FXA,P)
C BIVARIATE LOGISTIC (GUMBEL) PARTIALS
C ACL)=ALPHA O,A(2)=ALPHA1,A C3)=BETA1,A(4)=ALPHA2,A(5)=BETA2

DIMENSION XC1) ,A(1) ,P(1)
DOUBLE PRECISION X,A,P,FXA,WATE,C,CC,B,BB,D ,DD,E,EE,BC,DE,R,S,T,Z
C=A (3) * (X (1) +A (2) )
IF (DABS(C) .GT. 150.OD+OO) C=DSIGN(15O.OD+0O,C)
CC=DEXP (C)
B=A (5) *(x (2) +A (4))
IF (DABS(B).GT.150.OD+0O) B=DSIGN(15O.OD-4-OB)
BB=-DEXP (B)

(=1./ +CC)

DD=-D*D
(=1./ +BB)

EE=E *E

BC=EB*CC

DE=D*E

Z=1.+A (1)*BC*DE
P (1)=-.DD*EE*BC

T=A(1) *P(l)
R-DD*CC* (E*Z-1.)+T* (l..D*CC)
P(2)=A(3)*R
P (3) =(X(1) +A (2) ) *R.
S=EE*BB* (D*Z1.4)+T* (1..E*BB)
P (4)=A(5) *S
P (5) =(X(2) +A (4) ) *s
RETURN

END
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3. Bivariate Burr Subroutines

DOUBLE PRECISION FUNCTION F(X,A)
C BIVARIATE BURR R (FD) FUNCTION
C A1=R,A2=B1 ,A3=B2 ,A4=P ,A5=ALPHA1,A6=BETA1,A7=ALPHA2 ,A8=BETA2

DOUBLE PRECISION X,A,B,BB,C,CC,D,DD
DIMENSION X(l) ,A(1)

IF(A(1).GT.A(4)+l.OD+00) A(1)=A(4)+1.0D+00

IF(AC1).LE.O.OD+00) A(1)=0.0
B=A(6)*(X(l)+A(5))

IF (B.GT.0.OD+00) GO TO 17
BB=0
GO TO 18

17 IF (A(2)*DLOG(B).LT.150.0) GO TO 19
BB=DEXP (150.OD+00)

GO TO 18
19 IF (A(2))13,14,15
13 BB=1./CB* *DABS (A (2)))

GO TO 18

14 BB=1.0
GO TO 18

15 BB=B**A(2)
18 C=A (8) *(X (2) +A (7))

IF (C.GT.O.OD+00) GO TO 16
Cc=0

GO TO 10
16 IF(A(3)*DLOG(C).LT.150.O) GO To 20

CC=DEXP (150. OD+O0)

GO TO 10
20 IF (A(3))9,11,12

9 CC=1./ CC**DABS (A (3)))

GO TO 10
11 CC=1.0

GO TO 10
12 CC=C**A(3)
10 D= (1. 04BB4-CC+A (1) *BB*CC)

IF (A(4)*DLOG(D).LT.150.0) GO TO 21

DD=DEXP (-150.00+00)
GO To 22

21 DD=1.O/(D**A(4))

22 F=1.OD-s00-DD

RETURN
END
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SUBROUTINE PD(X,A,FXA,P)
61VAkUATE BURR R PARTTALS

C A1=R,A2=Bl1:A3-B2 ,A4=P,A5-APHA1,A6=BETA1,A7=ALPHA2 ,AB=BETA2
DIMENSION X(1),A(1),P(l)
DOUBLE PRECISION X,A,FXA,P,WATEB,BB,C,CC ,DDDEEE,G,GG,H,HH,I
IF(A(l).GT.A(4)+1.OD+00) A(1)=A(4)+1.0D+00

B=A (6) * (X (1) +A (5) )
IF (B.GT.0.OD+O0) GO TO 17

* BB=0
GO TO 18

17 IF (A(2)*DLOG(B).LT.150.0) Go TO 30
BB-DEXP (150. 0D+00)
GO TO 18

30 IF (A(2))13,14,15
13 BB=1./(B**DABS(A(2)))

GO TO 1s
14 BEB:1.0

GO TO 18
15 BB=B**A(2)
18 C=A (8) *(X (2) +A (7))

IF (C.GT.O.OD+0O) GO TO 16
Cc=O
GO TO 10

16 IF(A(3)*DLOG(C).LT.150.0) GO TO 31
CC=DEXP (150.00+00)
GO TO 10

31 IF (A(3))9,11,12
9 CC=1./(C**DABSCA(3)))

GO TO 10
11 CC=1.O

GO TO 10
12 CC=C**A (3)
10 D=(1.O+BB+CC+A(1)*BB*CC)

IF((A(4)+1.O)*DLOG(D).LT.150.O) GO TO 32
DD-A (4) *DEXP (-150. 00+00)

32 DD--A(4)*C(1.0/D)**(A(4)+1.0))
33E=DD*BB
G=-1.O+A(1) *BB
GG=1.04-A(1) *CC
H=DD*A (2) *GG
HH=DD*A (3) *G
P (1)=E*CC
IF (B.GT.O.0O+OO) GO TO 1
P(2)=0
GO TO 2

1 P (2) =E*DLOG (B) *GG
2 IF (C.GT.0.OD+00) GO TO 3

P (3) =0
GO To 4

3 P(3) =DD*CC*DLOG (C) *G
4 IF (A(4)*DLOG(D).LT.150.O) Go TO 34
P(4)=(DLOG (0))*(DEXPC-150O.D+0O))
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GO TO 35
34 PC(4) =DLOG (D)/(D* *A (4))
35 ±ii GOu.Ou-tu TO 23

P (5) =0.0
P (6)=O.O
GO TO 24

23 IF ((A(2)-1.O)*DLOG(B).LT.150.o) GO TO 36
EE=H*DEXP (15O.OD+OO)
GO TO 8

36 IF ('A(2)-1.0)5,6,7
5 EE=H/(B**DABS(A(2)-1.O))

GO TO 8
6 EE=H
7 EE=H*(B**(A(2)-l.O))
8 P(5)=EE*A (6)
P(6)=EE*X Cl)

24 IF (C.GT.O.OD+OO) GO TO 25

GO TO 26
25 IF ((A(3)-1.0)*DLOG(C).LT.15O.O) GO TO 37

I=HH*DEXP (150. OD+OO)
GO TO 22

37 IF (A(3)-1.0)19,20,21
19 I=HH/(C**DABS(A(3)-l.O))

Go To 22
20 I=HH

GO To 22
21 I=HH*(C**(A(3)-l.O))
22 P(7)=I*A(8)

P(8)=I*X (2)
26 CONTINUE

RETURN
END
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4. Weight Subroutine

DOUBLEPRECISIONFUNCTIONWATE (x FXA)

DOtJBLEPRECISIONX ,FXA

DIMENSIONX (1)

WATE=DABS(X(3)/( (l.OD+00-FXA) *FXA))

RETUR~N

END
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